THE EFFECT OF AN ADHESIVE ON PALLET JOINT STIFFNESS

by

Thomas Ian Frackiewicz,

Major Paper submitted to the Graduate Faculty of the

Virginia Polytechnic and State University

in partial fullfilment for the degree of

MASTER OF FORESTRY

in

Forest Products

Approved:

Albert L. DeBonis, Chairman

Marshall S. White, Project Advisor

Thomas E. McLain

September 1983

Blacksburg, Virginia USA

THE EFFECT OF AN ADHESIVE ON PALLET JOINT STIFFNESS

by

#### Thomas I. Frackiewicz

#### (AB STRACT)

An Investigation was conducted to find an adhesive that could bond green red oak. The adhesive found to bond best was a modified amine based epoxy resin. This adhesive was used to construct pallet joints in two of the three conditions: 1) nailed, 2) glued, 3) nail/glued, to determine the effect of an adhesive on pallet joint strength and stiffness.

It was found that the adhesive increased the initial strength and stiffness of the pallet joints but a brittle failure by the glue indicates the need for a more flexible adhesive.

## Acknowledgements

A special thanks to everyone who encouraged and supported this project. Also, a warm thank you is given to friends, and especially family who encouraged and lent support during the duration of this educational experience.

## TABLE OF CONTENTS

|                                              | page |
|----------------------------------------------|------|
| INTRODUCTION                                 | 1    |
| OBJECTIVE                                    | 2    |
| LITERATURE REVIEW                            | 3    |
| MATERIALS AND METHODS                        | 12   |
| PART I. Obtaining an Adhesive                | 12   |
| Assembly of Shearblocks                      | 14   |
| Testing Procedure                            | 18   |
| Analysis of Shearblock Tests                 | 18   |
| Results and Discussion-Shearblocks           | 19   |
| PART II Pallet Joints                        | 22   |
| Assembly and Testing of Pallet Corner Joints | 25   |
| Assembly and Testing of Joint                |      |
| Rotation Specimens                           | 28   |
| Analysis of Pallet Joint Test Results        | 32   |

| RESULTS AND DISCUSSION OF JOINT TESTS | 33 |
|---------------------------------------|----|
| Static Load On Corner Test            | 33 |
| Load On Corner Test                   | 40 |
| Joint Rotation Test                   | 43 |
| CONCLUSION                            | 50 |
| LITERATURE CITED                      | 51 |

| APPENDIX | A | 55         |
|----------|---|------------|
| APPENDIX | В | 58         |
| APPENDIX | С | 66         |
| APPENDIX | D | <b></b> 68 |
| APPENDIX | E |            |
| APPENDIX | F |            |
| APPENDIX | G |            |
| APPENDIX | H | 91         |

## List of Tables

| table |                                        | pa ge |
|-------|----------------------------------------|-------|
| 1     | Duncan's Multiple Range Test Showing   |       |
|       | Ranking of Adhesives According to      |       |
|       | Shear Strength                         | 20    |
| 2     | Moisture Content and Specific Gravity  |       |
|       | for Pallet Joints                      | 34    |
| 3     | Maximum Load Means for Static Load     |       |
|       | on Corner Test                         | 35    |
| 4     | Deflection at Maximum Load Means for   |       |
|       | Static Load on Corner Test             | 39    |
| 5     | Absorbed Energy Means from Impact Load |       |
|       | on Corner Test                         | · 41  |
| 6     | Joint Rotation Modulus Means           | • 44  |

vi

..

## List of Figures

•

| figure |                                                                                                           | pa ge |
|--------|-----------------------------------------------------------------------------------------------------------|-------|
| 1      | Schematic Diagram for Cutting<br>Material for Shearblocks                                                 | 15    |
| 2      | Schematic of Layed Up Panel For Glued<br>Shearblocka and Machined Shearblock                              | 17    |
| 3      | Experimental Design For Testing of<br>Pallet Joints                                                       | 23    |
| 4      | Diagram of Pallet Corner Joint for<br>Static and Impact Tests                                             | 26    |
| 5      | Diagram of Joint Rotation Specimen                                                                        | 29    |
| 6      | Loading Arrangement for Joint<br>Rotation Specimen                                                        | 30    |
| 7      | Typical Curves of Load vs. Deflection Curves<br>for the Three Treatments from Static Load                 |       |
| 2      | On Corner Test                                                                                            | 37    |
| 8      | Typical Curve of Cumulative Absorbed Energy<br>vs. Angular Deformation from Impact Load<br>On Corner Test | 10    |
|        | VE GULEE I COU                                                                                            | 42    |

vii

| Ç | ) | Typical Curves of Load vs. Deflection for |    |
|---|---|-------------------------------------------|----|
|   |   | the Three Treatments from the Joint       |    |
|   |   | Rotation Test                             | 45 |

## INTRODUCTION

Currently, the primary fasteners used in pallets are nails and staples. The use of these fasteners enables high rates of production. Metal fasteners have drawbacks in their use by increasing the potential for splitting during assembly or seasoning of pallets, which can severly effect Another problem involves protruding nails joint rigidity. as a result of wood shrinkage during seasoning. These prodruding nails may damage goods placed on the pallet. Also, nails interfere with pallet disposal. The nails or metal fasteners interfere with the chipping or grinding If the pallets are to be burned metal fasteners process. further interfere with with combustion performance. To remove metal fasteners may increase handling time, thus, increasing costs and making pallet disposal a less desirable operation.

Assembling pallets to aid disposal programs or increasing pallet stiffness may be accomplished by using a suitable adhesive. Such an adhesive must be able to bond satisfactorily to rough and green lumber and be resilient to impact loading. These conditions are not condusive for bonding using conventional gluing procedures or binders. The gluing procedures and binders need to be developed.

#### OBJECTIVE

The objectives of this project were to first, obtain and test a variety of traditional wood adhesives, and synthetics resins, to determine their suitability for bonding green red oaks (<u>Quercus spp</u>.). Second, once a suitable adhesive was accquired, it would be used to manufacture pallet joints in two of these three treatments: 1) nailed, 2) glued, and 3) nailed and glued (nail/glued). Pallet joints were tested dynamically as well as statically to determine the effect of an adhesive on pallet joint strength and stiffness.

#### LITERATURE REVIEW

Research on gluing of unseasoned green wood has been met with varied results. A reason for this is that the high moisture content (MC) in the wood may interfere with the curing reaction of the adhesive. Murphey and Nearn (1956) laminated red oak with moisture contents ranging from 6-50 percent using a resorcinol-formaldehyde resir. The shearblock specimens with moisture contents below 14 percent performed satisfactorily. The higher MC samples experienced adhesive migration from the glue joint resulting in reduced bonding strength. Currier (1960) glued scarf and finger joints from Douglas-fir studs with melamine and phenolformallehyde resin. The MC at the time of assembly ranged Specimens were then seasoned to an from 14-20 percent. average MC of 12 percent. One group was maintained at a MC of 20 percent. The glued studs were tested in static bending, loaded on the center with a crosshead speed of 0.1 Moduli of rupture and elasticity (MOR and MOE) inch/min. were calculated directly from test data. Specimens tested at their assembled MC of 20 percent had the highest Specimens seasoned to 12 percent MC had a stiffness. maximum strength reduction of 28 percent. Wood shrinkage from seasoning may have accounted for poor bond quality.

Strickler (1970) end glued green Douglas-fir, western larch, Grand-fir, and western red cedar with MC's ranging from 30 to 200 percent. The adhesives employed were resorcinol, phenol-resorcinol, melamine-urea, and casein. Joints mated cold followed by a cold-cure (drying at room temperature) were significantly weaker than joints that were glued hot or subsequently heated following assembly. It was concluded that when finger joints are mated in green wood, moisture soon migrates into the area dried during the initial heating Without this initial cure from the hot wood of the joint. surfaces, the moisture would interfere with the proper cure of the adhesives. Murphey et al. (1971) studied the feasibility of gluing red oak (6-24 and green MC) using phenol-resorcinol, casein, and melamine adhesives. Their method employed the use of a hot platten or hot air jet to surface dry the planed sample prior to gluing and assembly. Wet pockets caused by uneven drying result in spreading and adhesion problems. In order to maximize bonding strength, adhesives should be spread immediately after the heat treatment and assembly times should be as close to zero as The surface temperature of the lumber can be 100 possible. degrees C when the adhesive is spread, causing it to cure as soon as it is applied. If assembly time is not minimized precure is likely to occur. The assembled specimens were

either clamped at room temperature for 24 hours or further hot pressed for 15 minutes. An immediate cure of the glue allows formation of a cured adhesive-wood interface before additional moisture can migrate to the surface. In this study, phenol-resorcinol out-performed urea, casein and melamine for both methods.

Further use of heat to dry joint surfaces has been developed by Troughton and Chow (1980). Unseasoned white spruce 2 x 12 x 48 inch boards with moisture contents ranging from 30 to 90 percent were used. Finger joints were dried for 15 minutes at 150 degrees C with air speeds of 500 feet/minute. A phenol-formaldehyde resin was then applied followed by assembly within 20 seconds. The specimens were then cut in half with both sections kiln dried. Specimens were then tested in static bending loaded on the wide face. The average bending strength was 5320 pounds per square inch Troughton and Casilla (1983), used preheating (psi). techniques to edge glue unseasoned spruce-pine-fir with The preheated wood acts as a phenol-resorcinol resin. heatsink for adhesive curing reactions. Edge-pressure time at 50 psi, and heating time at 150 degrees C, were all found to effect bond quality. Using suitable bonding conditions, edge-joints could be made from unseasoned S-P-F lumber with wood failure greater than 80 percent indicating very good alhesion between the glue and wood.

Kurata and Nagahara (1977), used green structural spruce lumber to manufacture finger joints with epoxy and isocyanate adhesives. The MC's of the samples ranged from 30 to 120 percent. These samples were divided in half. One group was tested green while the other was seasoned until it was air dried. In the two MC conditions, flexural properties of samples glued with epoxy were affected by moisture content. Properties obtained in the air dry condition were superior to those in the green condition. It was concluded that the epoxy adhesive could be applied to finger joints of structural softwood timber with a high MC. Nakamura et al. (1979), conducted experiments in which isocyanate mixed with polyvinyl acetate (PVA) emulsion was applied to finger joints of spruce lumber. The moisture contents ranged from 15 to 120 percent. It was found that when specimens were assembled with air dried lumber. moisture content does not significanly affect flexural properties of the jointed timber. It was found that flexural properties are significantly affected when tested in the green condition though the modulus of elasticity was the same as specimens tested in the air dry (MOE) condition. Makamura et al. (1979) worked on finger joints of spruce (Picea jezoensis) and birch ( Betula <u>maximovicziana</u>) glued at MC's ranging from 12 to 80

percent. The adhesives used were epoxy resin, resorcinol, and vinyl urethane. It was found that under 40 percent MC, resorcinol, epoxy and vinyl urethane adhesives were effective for laminating wood for non-structural uses. At a MC of 60 percent epoxy and vinyl urethane were usable. At 60 percent MC, only vinyl urethane was suitable for use in structural purposes. Polyvinyl acetate mixed with isocyanate did not provide adequate flexural strength for structural purposes at any moisture content.

The use of adhesives in pallets has been limited to elastomeric adhesives common to construction of plywood, panel floor, roof and wall systems. Kurtenacker (1969) used elastomerics based of synthetic rubber to assemble pallets from green lumber. The pallets were tested immediatly or allowed to air dry prior to testing. In rough handling tests, wood density influenced the type of failure mode. In high density species, i.e., oak and hickory, failure was of a cohesive nature occurring in the adhesive zone. With low density species, i.e., yellow-poplar, most of the failure was in the wood itself. Moisture content was found to directly influence bond performance. Further work by Kurtenacker (1975) included four synthetic elastomeric adhesives for assembling pallets, two with organic solvents as a transporting agent and two without solvent. Pallets

were assembled green and conditioned to an air dry moisture content. Three tests were employed as follows: 1) static load on corner test, 2) dynamic impact load on corner test and 3) free-fall-oncorner-drop test from a height of 40 inches repeated six times. The two organic solvent borne adhesives had voids and crazing occurring in the glueline from loss of solvent during the curing process. This severely reduced strength performance and it was recommended that such adhesives not be used in pallet manufacture. The two non-solvent borne adhesives both out-performed mechanical fasteners (nails or staples) in impact tests, though moisture did significantly affect bonding. Density also affected the type of bond failure as found earlier by It was concluded that synthetic Kurtenacker (1969). elastomeric adhesives of the non-solvent type may be used under certain conditions such as moderate handling or where protruding nails may damage goods.

An in-service test of pallets assembled with nonsolvent borne synthetic elastomeric adhesives was conducted by Kurtenacker (1975). Forty pallets were used in a brick and cement yard for 18 months. Of these forty, fifteen were recovered for laboratory testing by use of the free-fall-oncorner-drop test. Since the conditions of exposure to the pallets were severe, both nailed and glued pallets sustained

heavy damage. It was concluded that the adhesive assembled pallets did not resist severe handling as effectively as nailed or stapled pallets. Moisture content and density had an influence on bonding strength. The mode of failure occurred mainly in the adhesive layer since oak, a high density species was used.

Adhesives that are to be used in pallet manufacturing need to have gap-filling capabilities. This may be accomplished by adding fillers to control viscosity. China clay has been used with elastomeric adhesives along with finely divided asbestos (Hemming, 1960). Titanium dioxide was added to modified epoxy with excellent results (Olsen and Blomquist, 1962). Vick (1973) used wood flour, walnut shell flour, and chrysotile absestos to control viscosity of a commercial resorcinol-formaldehyde resin. Of the three, asbestos gave good results without affecting strength. The amount of asbestos used was 1.8 parts weight basis of mixed resin.

In assembling pallets with adhesives, there must be certain properties of the adhesive favoring its use. Since the lumber is usually rough and unplaned the gluing results in uneven gluelines. Maintaining consistant clamping pressure after assembly may be difficult to control. Castor et al., (1973) glued rough planed lumber to manufacture

laminated powerline transmission poles. With the glueline ranging up to 1/16 inch thick, special properties are needed in such an adhesive. Some of these glue characteristics developed by Castor also pertain to pallet assembly.

- Gap filling capabilities up to 1/16 inch, since lumber may be rough planed or rough sawn.
- Low shrinkage and no crazing during or after cure, to maintain full integrity in the glueline.
- Zero sag for maintaining fill and enable lumber or pallets to be turned up on edge during lay up.
- 4) Full exterior durability for thick and thin glue lines.
- 5) Good substrate penetration with low clamping pressure, while maintaining a constant viscosity to insure adequate glueline coverage.
- Low odor during laminating operations to meet mill, state and federal guidelines.
- 7) Capable of being metered, i.e., both components in liquid form.

The adhesives pertaining to pallet assembly should also have these following additional characteristics.

- Short cure time to enable handling of pallets soon after assembly.
- 9) Costs competitive with other alternatives.
- 10) Resilient to impact loading.
- 11) Ability to bond under high moisture conditions.

An investigation was conducted to determine the effect of bonding green white oak with both epoxy and an isocyanate alhesive (Zito, 1983). Bentonite and Carboxylmethyl Cellulose (CMC) were used as a filler and dessicating agent. The purpose of the bentonite or CMC was to absorb excess moisture that may interfere with adhesive curing and reduce migration of glue from the joint. The percent of weight to total adhesive of bentonite or CMC was 0, 5, 10, and 15 percent. In shearblock tests, the epoxy out-performed the isocyanate adhesive, though problems with squeeze out occurred. The addition of either compound was not found to significantly increase bond performance in green wood.

#### MATERIALS AND METHODS

This project is divided into two major parts. Part I is a preliminary investigation using shearblock tests to determine a suitable adhesive for gluing green wood, while Part II involves comparative testing two types of pallet joints subject to three treatments (nailed, glued, and nail/glued) to determine the effect of an adhesive on pallet joint strength and stiffness. The pallet joints were subjected to the following three different tests:

- 1) Joint rotation test
- 2) Static load on corner test
- 3) Impact load on corner test

#### Part I Obtaining an Adhesive

Using Chemical Week buyer's guide (1982), a list of approximately 100 companies that specialize in resorcinol, phenolic, isocyanate, hotmelt, and epoxy resins was compiled. These companies were contacted to determine if their product line carried adhesives suitable for use in high moisture content conditions. A total of 25 samples were obtained in this manner. The list of donating companies can be found in Appendix A. Two of these adhesives needed external heat sources for proper curing and

were not used in this study since the application of heat is considered impractical in pallet manufacture.

The remaining twenty-three adhesives were tested in shear using a modified shearblock test. One inch rough sawn green oak was used for shearblocks. The grain orientation of the shearblocks was perpendicular to the opposite face (see Figure 2) to approximate the cross-lap joint found in pallets.

## Assembly of Shearblocks

To determine the performance of the various adhesives in bonding green wood, a modified shearblock test was developed. Rough sawn 4/4 green red oak boards were initially cut into 2 x 25 inch strips and stored in plastic bags or wrapped in 6 mil polypropylene sheets to prevent moisture moisture loss. Material that could not be used within three days was frozen to maintain a green condition. Since shearblock specimens were assembled at room conditions, these strips were thawed to room temperature before gluing. The strips, randomly selected, were cut into two 2 x 10 inch panels and ten 2 x 2 inch blocks. A 1-2 inch section was cut from the center of each strip and used for MC determination (see Figure 1). These cut panels were stored in plastic bags to prevent moisture loss while the glue was mixed.

Adhesives were prepared according to manufacturer's specifications. Since the gluing of rough lumber is not a common practice in the wood industry, a rate of glue spread needed to be determined. The laminating of rough planed lumber with a modified resorcinol was developed by Castor et al. (1973) in which glue spread rates of up to 200 pounds per thousand square feet of glueline (#/MSGL) were

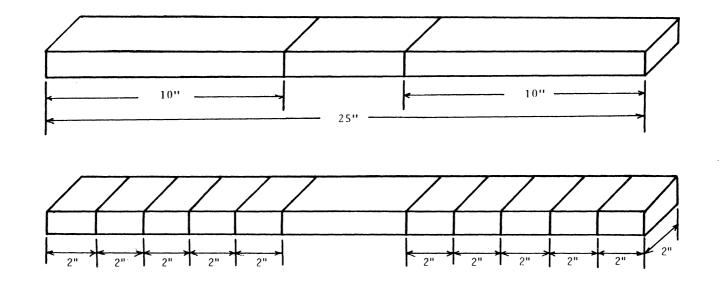



FIGURE 1. Schematic Diagram for Cutting Material for Shearblocks

recommended. Use of this heavy spread rate for the shearblock test specimens gave good glueline coverage. Since a low clamping pressure was also desired, 75 psi was chosen as a reasonable value. The viscosity of the adhesives did vary somewhat and the spread rates were adjusted in a few cases. If the spread rates were increased or decreased they were judged adequate if squeezeout occurred on all edges of the pressed specimens.

During assembly, the glue spread rates were controled by placing the 2 x 10 inch panels on a Mettler P10 scale, and adding adhesive to the nearest gram to achieve a spread rate equivalent to 200 #/MSGL. The grain of the 2 x 2 inch blocks was oriented perpendicular to the grain of the bottom panel as seen in Figure 2. This configuration simulates the cross-lap joints found in pallets. Pressing the glued samples was accomplished by sandwiching the glued panels between two boards of 2 inch kiln dried red oak, and using a Reihle universal testing machine to apply load equivalent to Samples were pressed for twelve hours or overnight 75 psi. and allowed to further cure and dry for 48 hours at room Prior to testing, shearblock specimens were conditions. machined according to Figure 2. The area of glueline tested in shear was 3 square inches. Ten replicate shearblocks were manufactured for each adhesive. Leftover glue was kept

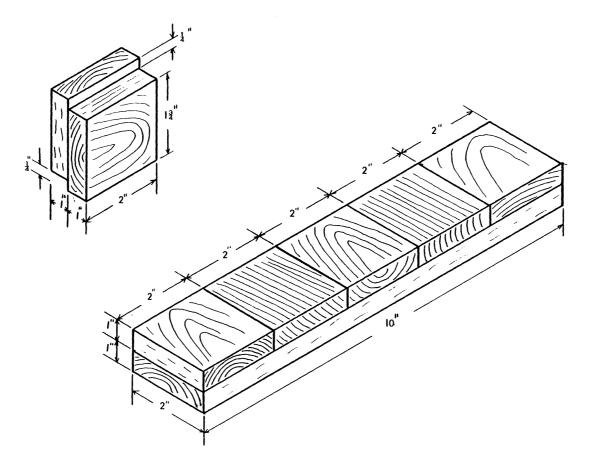



FIGURE 2. Schematic Diagram of Layed Up Panel for Glued Shearblocks and Machined Shearblock

in the mixing cans for comparison to that of the glueline in the shearblocks.

## Testing Procedure

All specimens were tested in shear using a standard shear device on the Tinius Olsen universal testing machine (max. capacity 12,000 pounds). The crosshead speed was .015 inches per minute. The maximum load at failure and percent wood failure were recorded. The area of the glued surface was measured to the nearest 0.1 inch squared and used to calculate shear strength in pounds per square inch (psi). If discoloration in the cured glueline occurred compared to the cured glue in the mixing container there was reason to suspect improper curing caused by wood moisture.

## Analysis of Shearblock Tests

The best performing adhesive was selected using a oneway analysis of variance (ANOVA) to determine if there was a significant difference between at least one pair of adhesives. Duncan's multiple range test was then used to rank the adhesives according to shear strength in psi. The initial moisture content of the shearblocks was also tested using ANOVA to check for any differences between specimen groups which could bias the selection process. The adhesive ranked highest according to shear strength by Duncan's procedure was selected for further testing in pallet joints.

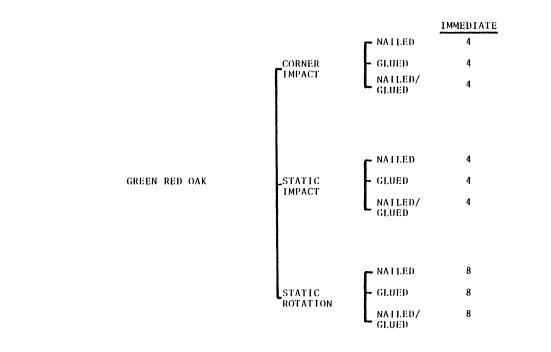
### Results and Discussion of Shearblock Tests

The results of the Duncan's procedure can be seen in Table 1. Most of the adhesives performed poorly because the saturated wood did not permit a good contact surface for alhesion. In a few cases the moisture interfered with the curing reaction. This was evident since a majority of the glues had zero percent wood failure. Migration of adhesive from the glueline caused by high moisture content was not found to be a major factor. With the exceptions of W87B, R14, and L1200, adhesives with bonding strengths over 200 psi cured properly in the glueline. The adhesives that cured properly were also those that had some wood failure. Below 200 psi, most of the adhesives had cohesive failures which occurred in the glueline.

The moisture content of the shearblock specimens at the time of assembly ranged from 63.0 to 88.3 with an average of 81.3 percent and with a standard deviation of 3.5 percent. Statistical analysis using ANOVA showed that there was no significant difference in MC between shearblock specimens at the time of assembly. A complete listing of the individual statistics for each adhesive and the ANOVA procedure can be found in Appendix B.

## TABLE 1

# Duncan's Multiple Range Test Showing Ranking of Adhesives According to Shear Strength


| DUNCAN | GROUPING       | PERCENT<br>WOOD<br>Failure | MEAN<br>strength<br>(psi) | ADHESIVE         |
|--------|----------------|----------------------------|---------------------------|------------------|
|        | A              | 27                         | 439                       | Магроху С2-31    |
| В      | A<br>A         | 4                          | 392                       | Epoxylite 3351   |
| B<br>B |                | 6                          | 360                       | Sikadur-31       |
|        | C              | 13                         | 286                       | W87B             |
| D<br>D | 0 0 0 0<br>0 0 | 7                          | 252                       | 88 × 1632        |
| ם<br>ם | C              | 10                         | 242                       | 88 × 1630-1      |
| 0<br>D | E              | 4                          | 220                       | TU-902           |
| ם<br>ם | Ē              | 21                         | 203                       | DER-331          |
| D      | E<br>E         | 0                          | 201                       | R-14             |
| ם      | E              | 0                          | 201                       | LE-1200          |
| F      | E              | 11                         | 161                       | Магроху С2-30    |
| F      | G              | 6                          | 122                       | Leebond 23-205   |
| н<br>н | G              | 4.                         | 96                        | Epoweld 3673     |
| H<br>H | G              | 0                          | 92                        | Epon 282/V40     |
| H<br>H | G              | I O<br>I                   | 89                        | RP-20            |
| H<br>H | G              | I 11<br>I                  | 88.                       | Scotch Grip 5230 |
| H<br>H | J G            | I O<br>I                   | 71                        | Capcure 3-800    |
| н      | JG             | I 5.<br>I                  | 64                        | HM 964           |
| н      | JК             | I O<br>I                   | 51                        | Scotch Weld 2216 |
|        | JK             | I O                        | 27                        | Kwik-Plus/BA-77  |
|        | JK             | 0                          | 26                        | Plionail         |
|        | JK             | 0                          | 18                        | Sikadur 33       |
|        | ĸ              | 0                          | 0                         | WP-2200          |

Since Marpoxy C2-31, a modified amine based epoxy performed with the highest bonding strength of 440 psi with 27 percent wood failure, it was selected for further testing with pallet joints.

### Part II Pallet Joints

The second part of this investigation involved testing pallet joints to determine if an adhesive could increase pallet joint stiffness. Joint rotation and pallet corner specimens were assembled with three conditions: 1) nailed, 2) glued, and 3) nailed and glued. The factorial design can be seen in Figure 3.

The fastener used in the joint construction was a 0.113 x 2.25 inch hardened steel helically threaded nail (VPI nail number 1875) with a average crest diameter of 0.132 inches and an average MIBANT (Stern 1970) angle of 19 degrees (see Appendix C). Three nails were used in each joint. During initial joint construction splitting occurred when driving nails even though the red oak was in the green condition. This was seen as a source of variability in the experiment. With a maximum of 8 specimens per test a significant difference between treatments due to reduced strength in joints could have resulted. Predrilling holes in the deckboards was seen as a solution to the splitting problem. Since the portion of the nail driven into the stringer contributes most to the joint strength, predrilling deckboards was not anticipated to effect the outcome of the experiment.





Stern (1983) recommended that if holes are predrilled in the deckboards prior to nailing, the hole should not exceed 70 percent of the nail shank diameter. Therefore predrilling was done to prevent splitting during assembly. This substantially reduced the occurrence of splitting but did not eliminate it. As will be shown later, even with predrilling significant differences were found between the three treatments in all the tests.

The adhesive used was Marpoxy C2-31, a modified amine based epoxy mixed on a weight basis of 100 parts resin to 26 parts hardener, and having a pot-life of 1.25 nours with a 150 gram mass. A technical data sheet on Marpoxy C2-31 can be found in Appendix D. Glued joints were constructed with a minimum open assembly time. The spread rate was equivalent to 200 #/MSGL. Pressure applied to the glued only specimens was 75 psi using the Reihle universal testing machine. Press time was 12 hours or overnight.

During assembly of pallet joints pieces of trimmed lumber were randomly selected and used for determination of the initial moisture content. Following assembly all specimens were stored at room conditions 20 degrees C and 50 percent relative humidity for 48 hours.

## Assembly and Testing of Pallet Corner Joints

To evaluate the performance and strength of the three fastening systems, pallet corner joints were assembled according to Figure 4. The corners were rounded to minimize compression of the wood at the bearing points so deflection would be measured more accurately.

The pallet corners were subjected to a static or impact impact compressive force applied to the apex (Figure 4). The static compressive force was applied using the Tinius Olsen universal testing machine at a crosshead speed of 0.3 inches per minute (Kurtenacker, 1975). A roller bearing surface was used to reduce friction during deformation. Load deflection curves were plotted during testing to provide information for maximum load and maximum deflection values. Four pallet corners of each treatment were tested.

In the dynamic drop on corner test two different procedures have been developed. Stern (1974) calls for an initial drop height of 4 inches incremented by four inches after each successive drop up to a a maximum height of 28 inches. Kurtenacker's (1975) procedure has a one inch initial drop height which is incremented by one inch for each successive drop up to a maximum height of 24 inches. Since Stern's approach produces a more severe condition, it was used in this experiment.

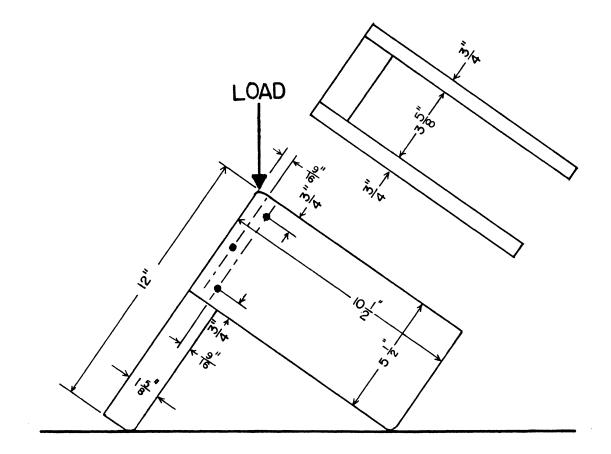
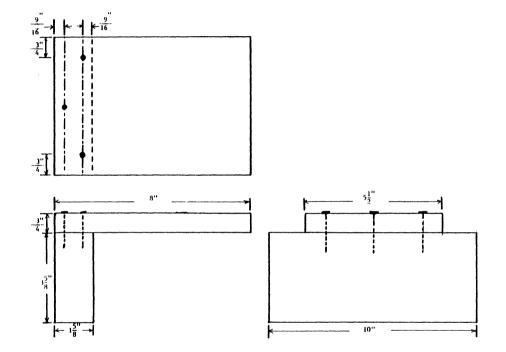



FIGURE 4. Diagram of Pallet Corner Joint for Static and Impact Tests


According to Stern (1974) a 30 pound weight falling freely between guides from sucessively increasing height increments generates the impact compressive force. The test procedure calls for the first drop of the impacting weight to be located 4 inches between the bottom of the weight and the top of each specimen. The procedure is repeated, with the drop height being increased each time by 4 inches. After the first drop from 28 inches, the weight is dropped from the 28 inch position until failure. Failure is considered to have taken place in nailed joints after the original 90 degree angle between the deckboards and stringer has increased to 120 degrees. In the case of glued only joints, failure was considered when the specimen collapsed, since no deformation up to failure, was observed during testing. Angle deformation changes between the deckboard and stringer were recorded following each drop.

After testing of pallet joints, sections were removed from stringers and deckboards for MC determination at time of testing. Specific gravity was determined based on oven dry weight and volume.

Assembly and Testing of Joint Rotation Specimens

To determine the joint modulus (stiffness), eight joint rotation specimens were manufactured for each treatment according to the dimensions in Figure 5. Following assembly, specimens were stored at room conditions 20 degrees C and 50 percent relative humidity for 48 hours, afterwhich they were tested.

Static testing of all the joint rotation specimens was conducted using the Tinius Olsen universal testing machine. The stringer was clamped rigidly to prevent movement (see Figure 6). A load was applied four inches from the edge of the stringer with a crosshead speed of 0.45 inches per minute (Kyokong, 1979). A deflectometer was used to measure vertical displacement during testing. A plot recording load verses deflection was charted for each test. Using ROTMOD, a computer program written by Mulheren, rotation moduli were What ROTMOD does is correct for the vertical calculated. displacement caused by shear and bending of the deckpoard. This calculated deflection is subtracted from the total deflection and the resulting deflection is used to calculate the rotation modulus. The moment arm for the nail joint used in the calculation of the rotation modulus is the distance from the applied load to the leading edge of the



.

FIGURE 5. Diagram of Joint Rotation Specimen




FIGURE 6. Loading Arrangement for Joint Rotation Specimen

stringer. The second moment arm is the distance from the leading edge of the stringer to centerline of the stringer (or one-half the stringer width). In the glued and nail/glued specimens the stringer width was increased by 33 percent to account for the difference in location of the centroid axis. (Which was assumed to be two thirds the distance in from the leading edge of the stringer.) Following testing, sections were cut from each specimen for moisture content determination at time of testing as well as specific gravity based on oven dry weight and volume.

#### Analysis of Pallet Joint Test Results

For each test procedure an ANOVA was used to determine if there were differences in mean values for maximum load, deflection at maximum load, and joint moduli. The gerneral null hypothesis for each test was:

Ho: There is no significant difference inproperties between mean values u of each of the three treatments ie., u =u =u where u =nailed, u =glued, and u =nail/glued.

With the alternate hypothesis stating:

Ha: There is a significant difference between at least one pair of mean treatment values.

If the null hypothesis was rejected at an alpha level= 0.05 for a particular test, then Duncan's multiple range test could be used to rank the mean values to determine which were significantly different. Cumulative absorbed energy mean values will be used as the basis for discussion of the dynamic load on corner test.

#### RESULTS OF PALLET JOINT TESTS

The average moisture content of all pallet joints at the time of asembly was 77.4 percent (=6.1). After storage for 48 hours at room conditions and following testing the average moisture decreased to 66.1 percent (=9.1) for the pallet corner joints and 64.8 percent ( =10.1) for the joint Table 2 shows mean values of moisture roation specimens. content and specific gravity for deckboard, stringer, and overall specimens. A one way analysis of variance for both moisture content and specific gravity, between treatments was performed. From these analyses it was found that there was no statistical difference in MC or specific gravity between treatments for either the pallet corner joints of joint rotation specimens. Therefore it was concluded that these two factors were independent of the strength factors measured in this study. Appendix E has the individual data and ANOVA test results.

#### Static Load on Corner Test

Table 3 is a summary of the mean results for maximum load. The result of the ANOVA for maximum load showed that there was a significant difference treatments at an 0.05 alpha level. From the Duncan's procedure it was found that

## TABLE 2

# Moisture Content and Specific Gravity for Pallet Joints

| Specimen Type           | Time of | Content at<br>Assembly<br>cent) | Moisture Content at<br>Time of Assembly<br>(percent) |      | Specific<br>Gravity |
|-------------------------|---------|---------------------------------|------------------------------------------------------|------|---------------------|
|                         | X       | σ                               | X                                                    | σ    | X                   |
| Pallet Corner<br>Joints | 77.4    | 6.1                             | 66.1                                                 | 9.1  | .655                |
| deckboards              |         |                                 | 61.5                                                 | 6.2  | .674                |
| stringers               |         |                                 | 75.2                                                 | 7.1  | .617                |
| Joint Rotation          | 77.4    | 6.1                             | 64.7                                                 | 10.1 | .643                |
| deckboards              |         |                                 | 56.6                                                 | 5.6  | .666                |
| stringers               |         |                                 | 72.9                                                 | 6.1  | .619                |

## TABLE 3

### Maximum Load Means for Static Load on Corner Test

| Treatment  | Mean<br>(pounds) | Standard Deviation |
|------------|------------------|--------------------|
| Nail       | 1560             | 180                |
| Glue       | 2140             | 570                |
| Nail/Glued | 3850             | 370                |

the glued, nailed, and nail/glued specimens were all significantly different from each other. The glued joints had on average 1.68 times the initial load carrying capacity of the nailed only joint. The nail/glued joint had on average 2.45 times the initial load carrying capacity of the nailed joint. The addition of Marpoxy C2-31 significantly increased the initial load bearing capacity of the pallet joints.

To better understand the behavior of the three joints types under load, the charted load verses deflection curves which were closest to the mean joint strengths were superimposed and can be seen in Figure 7. From this it can be seen that the initial load carrying capacity is greatest in the nail/glued joint followed by the glue and finally the nailed joint. Both the nail/glued and glued only joints had a high initial load carrying capacity until the glueline failed. In the nail/glued joint, the initial load is resisted mainly by the adhesive bonded to the wood, though some of this initial load is shared by the nails. Once the glueline fails the total load is immediately supported by the fasteners. The failure of the gluebond is similar to an increased rate of loading on the joint which increases its load carrying capacity. Since the glued and nail/glued joints are guite rigid, the initial deformation of the joint

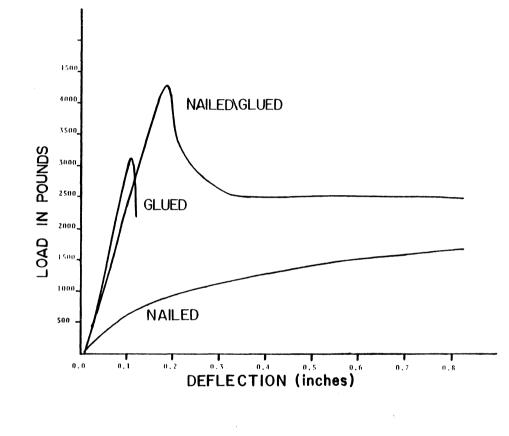



FIGURE 7. Typical Curves of Load vs. Deflection for the Three Treatments from Static Load on Corner Test

may be attributed to compression perpendicular to the grain. Once the glueline fails there is no difference in strength between that of the nailed joint or the nail/glued joint.

The static test of pallet corner joint also requires that the deflection at maximum load be measured. Table 4 shows the mean values for the deflection at maximum load. The result of the ANOVA procedure found that there was a significant difference in deflection at maximum load between treatments at a 0.05 alpha level. From the Duncan's procedure the nailed joint was found to be significanty different from the other two treatments. The deflection was determined to be at the point of maximum load from the first part of this discussion. Since the nailed/glued joint retains the ability to sustain loads after the gluebond fails, the deflection values reflect the stiffness of the The ANOVA, Duncan's procedure and data on the joints. static load on corner test can be found in Appendix F.

### TABLE 4

Deflection at Maximum Load Means for Static Load on Corner Test

| Treatment  | Mean<br>(inches) | Standard Deviation |  |
|------------|------------------|--------------------|--|
| Nail       | 0.744            | 0.091              |  |
| Glue       | 0.107            | 0.019              |  |
| Nail/Glued | 0.186            | 0.026              |  |

.

.

#### Impact load on corner test

Table 5 is a summary of the average cumulative absorbed energy to failure. As can be seen the combination of the glue and nail increase the resistance to impact loading. Figure 8 shows a plot of the cumulative absorbed energy verses angular displacement typical of the three treatments The addition of the adhesive increases testel. the resistance to impact loading especially if used in conjuction with a fastener. In the nail/glued joint the fasteners help distribute the energy over the whole joint until a maximum load is applied and the glue bond fails. Then nail withdrawal and hence deformation begins. Data for the impact load on corner test can be found in Appendix H.

## TABLE 5

Absorbed Energy Means from Impact Load on Corner Test

| Treatment  | Mean<br>(foot-pounds) | Standard Deviation |
|------------|-----------------------|--------------------|
| Nail       | 470                   | 105                |
| Glue       | 90                    | 52                 |
| Nail/Glued | 790                   | 184                |

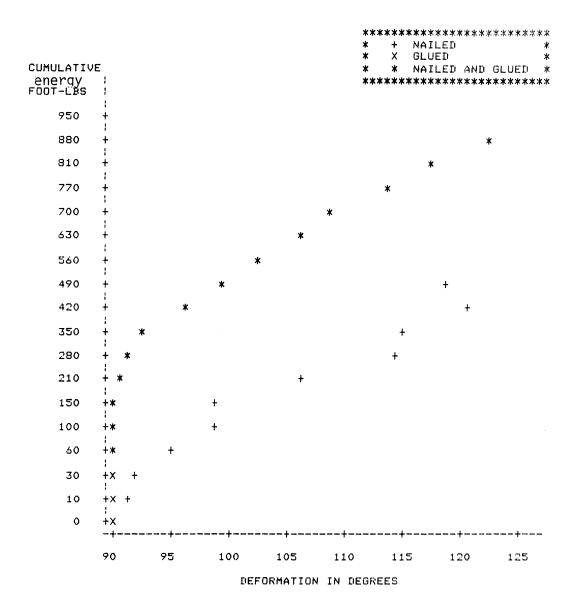



FIGURE 8. Typical Curves of Cumulative Absorbed Energy vs. Angular Deformation for the Three Treatments from the Impact Load on Corner Test

#### Joint Rotation Test

Table 6 shows the mean values for the joint moduli. The ANOVA found that there was a significant difference between the mean treatment values at an 0.05 alpha level. From the Duncan's procedure, it was shown that the glued and nail/glued joints were not significanly different. The nailed only joint was found to be significantly different from the other two treatments. The ANOVA and Duncan's procedure as well as data of individual specimens can be found in Appendix G.

Figure 9 is a superposition of three charted load verses deflection curves closest to the average values obtained in each treatment. It can be seen that similar behavior of the joint during loading occurred as in the static testing of pallet joints. The initial load carrying capacity is greatest in the nail/glued joint followed by the glue and finally the nailed joint. Both the nail/glued and glued only joints had a high initial load carrying capacity until the glueline failed. In the nail/glued joint, the initial load is resisted mainly by the adhesive bonded to the wood, though some of this initial load is shared by the nails. Once the glueline fails the total load is

## TABLE 6

## Joint Rotation Modulus Means

| Treatment  | Treatment Mean<br>(inch-pounds/radian) |       |
|------------|----------------------------------------|-------|
| Nail       | 15330                                  | 6050  |
| Glue       | 60990                                  | 11830 |
| Nail/Glued | 69360                                  | 12070 |

.

•

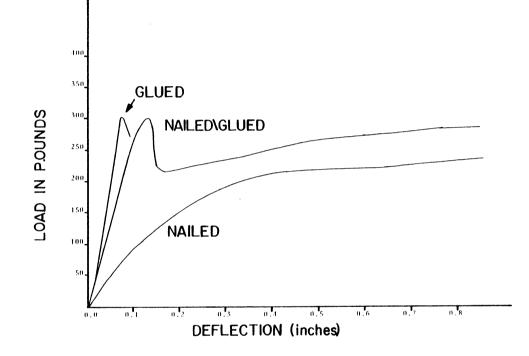



FIGURE 9. Typical Curves of Load vs. Deflection for the Three Treatments from the Joint Rotation Test

gluebond is similar to an increased rate of loading on the joint which increases the load carrying capacity of the joint. Since the glued and nail/glued joints are quite rigid, the initial deformation of the joint may be attributed to compression perpendicular to the grain. Once the glueline fails there is no difference in strength between that of the nailed joint or the nail/glued joint. The initial higher sustained load and higher stiffness by the glued and nail/glued joint is a result of the adhesive, and no nail withdrawal occuring until the gluebond fails.

Finally, to delevop a realistic understanding of how the high stiffness of a glued or nail/glued pallet joint would affect deflection in a full sized pallet, a computer simulation was performed. Using a program developed by Mulheren (1982), acronymed SPACEPAL which stands for SPACE FRAME ANALYSIS OF WOOD PALLETS, two pallet designs were analyzed. This program is based on the matrix displacement method and considers a pallet to be a three dimensional (space) frame. From the analysis the deflection as well as internal forces on any joint or member can be determined for a given pallet. The first analysis was with a fully reversable 42 x 48 inch pallet with eight 3/4 inch deckboards on the top (100 percent coverage) and bottom (100 percent coverage). The joint dimensions were the same as those tested in this experiment. Average joint moduli values for the nailed and nail/glued treatments were used in Since the glued and nail/glued joint moduli the analysis. were statistically the same, the average nail/glued modulus was used. Simulating a 2000 pound distributed load in a racked across the deckboards condition it was found that the nailed only pallet sections deflected .177 inches where as the nail/glued deflected .121 inches.

Decreasing the number of top deckboards to six (75 percent coverage), and the bottom deckboards to four (50

percent), a second set of analyses were performed using the same joint stiffnesses. For discussion purposes this pallet will be called a modified pallet. Simulating the same 2000 pound distributed load in a racked across the deckboards condition it was found that the nailed only pallet deflected .436 inches whereas the nail/glued deflected .311 inches.

It is of further interest in such an analysis to determine if the glue bond can maintain itself under an applied static load. Since the individual moment at failure of the gluebond is known as determined from actual testing, comparison can be made to the moment calculated by SPACEPAL. Using a joint located in the center of the fully reversable pallet the moment was found to be 324 inch-lbs for the nail/glued treatment. From actual experimental testing it was found that the failure of the gluebond in the nail/glued joint occured at an average of 910 inch-lbs. This 910 inchlbs force is equivalent to a 5600 pound distributed load on the nail/glued fully reversable pallet. In the modified nail/glued pallet, the moment at the center joint was calculated by SPACEPAL to be 661 inch-lbs. This moment is equivalent to a distributed load of 2750 pounds. Since there are fewer members in the modified pallet to distribute and support the applied load a larger moment is applied to the individual joints.

Since the glued joint increases the stiffness of the pallet under load it seems reasonable that the bending stresses would increase especially in the deckboards. From analysis of SPACEPAL it was found that the increased rigidity of the pallet by using glue did not increase the bending stresses beyond the strength of the stringers or deckboards.

From the analysis by SPACEPAL it would be reasonable to conclude that a fully covered pallet could sustain substantial loads without experiencing failure in the glueline. The modified pallet may experience gluebond failure at a load well below that of the fully covered pallet.

Since the effects of drying stresses on the glueline are of importance the same number of specimens as in this study have been assembled green and will be tested in the air dry condition at a future date. This information will be made available at that time.

#### CONCLUSION

From testing of pallet corner joints the following information was found;

----In the Static Load on Corner Test the average maximum loads were 4346.3, 2980, and 1776 pounds respectively for the nail/glued, glued, and nailed joints.

----The average deflections at maximum load were .747, .107, and .136 inches respectively for the nailed, glued, and nail/glued joints.

----The joint rotaion moduli were found to be 60990, 69364, and 15332 in-lbs/rad, respectively for the glued, nail/glued, and nailed specimens.

This investigation has shown that some degree of strength and stiffness can be incorporated in red oak pallet joints assembled at an average moisture content of 77.4 using an specialized epoxy. The stiffness of the joint caused a sudden failure in the glued only and nail/glued joints which could have severe consequences because there is no warning before the failure occurs. Some modification of the epoxy to increase joint flexibility without reducing joint strength should be investigated. Field testing is recommended on full sized pallets since this study was conducted only on pallet joints and not full sized pallets.

#### Literature Cited

- Castor, R. W., N. F. Gillern, and J. T. Howell. 1973. A gap filling phenol-resorcinol adhesive for laminating. Forest Products Journal 23(11):55-59.
- Currier, R. A. 1960. Finger jointing at high moisture content. Forest Products Journal 10(6):287-293.
- Hemming, C. B. 1960. Using elastomeric adhesives. Forest Products Journal 10(1):30-32.
- Kurata, H. and Y. Nagahara. 1977. Experimental studies on the finger-joint of green structural lumber. Journal of the Hokkiado Forest Products Research Institute. 307(8):11-15.
- Kurtenacker, R. S. 1975. How pallets with laminated red oak deckboards performed in use. USDA Forest Service Gen. Tech. Report FPL-4. Forest Products Lab., Madison, WI. 9 pp.
- Kurtenacker, R. S. 1973. Evaluation methods of assembling pallets. USDA Forest Service Research Paper 213. Forest Products Lab., Madison, WI. 29 pp.
- Kurtenacker, R. S. 1969. Appalachian hardwoods for pallets: effect of fabrication variables and lumber characteristics on performance. USDA Forest Service Research Paper FPL-112. Forest Products Lab., Madison, WI. 19 pp.

- Kyokong, Buhunum. 1979. The development of a model of the mechanical behavior of wooden pallets. Ph.D. Dissertation. VPI & SU. Blacksburg, Virginia.
- Mulheren, Kelly C. 1981. SPACEPAL. Three-dimensional structural analysis program for pallets. Unpublished. VPI & SU Wood Research and Construction Laboratory Pallet and Container Research Center.
- Murphey, W. K., B. E. Cutter, E. Wachsmuth, and C. Gatchell. 1971. Feasability studies on gluing red oak lumber at elevated moisture contents. Forest Products Journal 21(6):56-59.
- Murphey, W. K., and W. T. Nearn. 1956. Effect of moisture content on the performance and appearance of resorcinol gluelines in laminated red oak lumber. Forest Products Journal 6(5): 194-197.
- Nakamura, F., M. Sato, and N. Minemura. 1979. Experiments on gluing of high moisture content lumber. Hokkaido Forest Products Research Institute, No. 68 pp. 146-175. \_\_\_\_\_\_. 1979. The end-jointing of high moisture content wood by using a PVAC-MDI adhesive. Hokkaido Forest

Products Inst., Report No. 325 pp. 18.

Olsen, W. Z., and P. F. Blomquist. 1952. Epoxy-resin adhesives for gluing wood. Forest Products Journal 12(2):74-80.

- Stern, E. George. 1983. Personal communication. July 28, 1983.
- Stern, E. George. 1974. Design of pallet deckboard stringer joints. VPI Bulletin No. 126.
- Stern, E. George. 1970. The MIBANT quality control tool for nails. VPI Bulletin No. 100.
- Stern, E. George, and Walter Wallin. 1976. Eucalyptus warehouse and exchange pallets. VPI Bulletin No. 147.
- Strickler, M. D. 1970. End-gluing of green lumber. Forest Products Journal 20(9):47-51.
- Troughton, G. E. and R. C. Casilla. 1983. Edge-gluing unseasoned spruce-pine-fir lumber using a preheating method. Forest Products Journal 33(5):38-44.
- Troughton, G. E., and S. Chow. 1980. Finger jointing kiln dried and unseasoned white spruce using the "WFPL method". Forest Products Journal 30(12):48-49.
- Vick, C. B. 1973. Gap-filling phenol-resorcinol adhesives for construction. Forest Products Journal 23(11):33-41.
- Zito, P. 1983. Feasability study on the gluing of untrested white oak with modified epoxy and isocyanate binders. Undergraduate term project. Virginia Tech, Blacksburg, Virginia. 10 pp.

\_\_\_\_\_. 1982. Chemicalweek buyer's guide. Mcgraw-Hill Inc., NY NY. October.

## APPENDIX A

# List of Donating Companies

## List of Contributing Companies

| Company                                        | Adhesive                                     |
|------------------------------------------------|----------------------------------------------|
| AMICON<br>Lexington, MA                        | TU-902                                       |
| BACON INDUSTRIES, INC.<br>Watertown, MA        | Kwick Plug - BA-77                           |
| DIAMOND SHAMROCK CORPORATION<br>Morristown, NJ | Capcure 3-800, EH-30<br>Hardener 48, Der-331 |
| EPOXYLITE CORPORATION<br>Anahein, CA           | Epoxylite #3351                              |
| GENESCO<br>Nashville, TN                       | 88 x 1630-1<br>88 x 1632                     |
| GOODYEAR<br>Ashland, OH                        | Plionail                                     |
| HARDMAN INCORPORATED<br>Belleville, NJ         | Epoweld 3673                                 |
| HB FULLER<br>St. Paul, MN                      | HM 964                                       |
| KEY POLYMER CORPORATION<br>Lawrence, MA        | Marpoxy C2-30<br>Marpoxy C2-31               |
| LEPOXY PLASTICS, INC.<br>Fort Wayne, IN        | Leebond 23-205                               |
| NATIONAL CASEIN<br>Chicago, IL                 | R-14, WP-2200<br>LE-1200                     |
| PERKINS INDUSTRY<br>Overland Park, KS          | RP 20                                        |
| SHELL CHEMICAL COMPANY<br>Houston, TX          | Epon 828/v40                                 |
| SIKA CORPORATION<br>Lyndhurst, NJ              | Sikadur 31<br>Sikadur 33                     |
| 3M<br>Bristol, PA                              | Scotch Grip 5230<br>Scotch Weld 2216         |

WEYERHAEUSER COMPANY Tacoma, WA WCO 87-507 HL 4

The following adhesives could not be used since they needed external heat for curing:

| ASHLAND CHEMICAL COMPANY | Isoset WD3-A320     |
|--------------------------|---------------------|
| Columbus, OH             | CX-11               |
| UNION CARBIDE            | BIS 2700            |
| Boundbrook, NJ           | Poly vinyl Buterate |

#### APPENDIX B

ANOVA Procedure for Shear Strength (in psi) for Shearblock Test Duncan's Multiple Range Test for Shear Strength (in psi) ANOVA Procedure for Moisture Content at Time of Assembly -Shearblock Statistics from Shearblock Tests Grand Mean Statistics for Shearblock Tests

#### ANDVA PROCEDURE for SHEAR STRENGTH (in psi) for SHEARBLOCK TEST

CLASS LEVELS VALUES

BRAND 23 AMCN902 BACON DER331 DI3-800 EFON282 EFOXYLT GEN1631 GEN1632 HARDMAN HM964 LEPOXY L1200 MARC230 MARC231 PLIONAL RF20 R14 SIKA31 SIKA33 WF2200 W87B 3M2216 3M5230

NUMBER OF OBSERVATIONS IN DATA SET = 230

| F VALUE | AN SQUARE | ME      | SUM OF SQUARES   | DF      | SOURCE          |
|---------|-----------|---------|------------------|---------|-----------------|
| 40.93   | .97109091 | 155787  | 3427335.36400000 | 22      | MODEL           |
| PR > F  | .41238164 | 3806    | 787927.36300000  | 207     | ERROR           |
| 0.0001  |           |         | 4215262.72700000 | 229     | CORRECTED TOTAL |
|         | PSI MEAN  |         | ROOT MSE         | c.v.    | R-SQUARE        |
|         | .41000000 | 161     | 61.69612939      | 38,2232 | 0.813078        |
|         | PR > F    | F VALUE | TYPE I SS        | DF      | SOURCE          |
|         | 0.0001    | 40.93   | 3427335.36400000 | 22      | BRAND           |
|         | PR > F    | F VALUE | TYPE III SS      | DF      | SOURCE          |
|         | 0.0001    | 40.93   | 3427335.36400000 | 22      | BRAND           |

#### DEPENDENT VARIABLE: PSI

#### DUNCAN'S MULTIPLE RANGE TEST RESULTS for Shear Strength (in psi)--ShearBlock test Means with the same letter are not significantly different.

| DUNCAN | GROUPING   | PERCENT<br>WOOD<br>FAILURE | MEAN<br>strength<br>(psi) | ADHESIVE              |
|--------|------------|----------------------------|---------------------------|-----------------------|
|        | A<br>A     | 27.0                       | 439.96                    | Магроху С2-31         |
| B<br>B | A          | 4.5                        | 392.80                    | Epoxylite 3351        |
| B      |            | 6.8                        | 360+40.                   | Sikadur-31            |
|        | C<br>C     | 13.0                       | 286.80                    | W87B                  |
| D<br>D | C<br>C     | 7.0                        | 252.41                    | 88 × 1632             |
|        | c          | 10.6                       | 242.05                    | 88 × 1630-1           |
| D      | E          | 4.4                        | 220.20                    | TU-902                |
| D      | E          | 21.0                       | 203.40                    | DER-331               |
| D<br>D | Ē          | 0.4                        | 201.64                    | R-14                  |
| D      | E          | 0.9                        | 201.40                    | LE-1200               |
| F      | Ē          | 11.1                       | 161.33                    | Marpoxy C2-3 <b>0</b> |
| F      | G<br>G     | 6.0                        | 122.45                    | Leebond 23-205        |
| н<br>н | G          | 4.8                        | 96.35                     | Epoweld 3673          |
| H<br>H | G          | 0.0                        | 92.80                     | Epon 282/V40          |
| н      | G I<br>G I |                            | 89,80                     | RF-20                 |
| н      | GI<br>GI   | 11.5                       | 88.91                     | Scotch Grip 5230      |
| н<br>н | JGI        | 0.0                        | 71.70                     | Capcure 3-800         |
| H<br>H | JGI        | 5.8                        | 64.53                     | HM 964                |
| н      | JKI<br>JKI | 0.0                        | 51.10                     | Scotch Weld 2216      |
|        | JKI        |                            | 27.90                     | Kwik-Plus/BA-77       |
|        | JK         | 0.0                        | 26.10                     | Plionail              |
|        | JK         | 0.0                        | 18.30                     | Sikadur 33            |
|        | к          | 0.0                        | 0.20                      | WF-2200               |

#### ANOVA PROCEDURE for MOISTURE CONTENT AT TIME OF ASSEMBLY--SHEARBLOCKS

CLASS LEVELS VALUES

BRAND 23 AMCN902 BACON DER331 DI3-800 EF0N282 EF0XYLT GEN1631 GEN1632 HARDMAN HM964 LEF0XY L1200 MARC230 MARC231 FLIONAL RF20 R14 SIKA31 SIKA33 WF2200 W87B 3M2216 3M5230

NUMBER OF OBSERVATIONS IN DATA SET = 230

| HOIDIGKE O |                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DF         | SUM OF SQUARES                                           | MEAN SQUARE                                                                                                                                                                                          | F VALUE                                                                                                                                                                                                                                                                                                                                                                                         |
| 22         | 278,98000000                                             | 12.68090909                                                                                                                                                                                          | 1.08                                                                                                                                                                                                                                                                                                                                                                                            |
| 23         | 269.75500000                                             | 11.72847826                                                                                                                                                                                          | PR > F                                                                                                                                                                                                                                                                                                                                                                                          |
| 45         | 548,73500000                                             |                                                                                                                                                                                                      | 0.4261                                                                                                                                                                                                                                                                                                                                                                                          |
| C.V.       | ROOT MSE                                                 | MOISTURE CONTENT<br>MEAN                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4.2098     | 3.42468659                                               | 81.35000000                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                 |
|            |                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |
| DF         | TYPE I SS                                                | F VALUE PR > F                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22         | 278,98000000                                             | 1.08 0.4261                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                 |
|            |                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                 |
| DF         | TYPE III SS                                              | F VALUE FR > F                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22         | 278,98000000                                             | 1.08 0.4261                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | DF<br>22<br>23<br>45<br>C.V.<br>4.2098<br>DF<br>22<br>DF | DF     SUM_DF_SQUARES       22     278.9800000       23     269.7550000       45     548.7350000       C.V.     RDDT_MSE       4.2098     3.42468659       DF     TYPE_I_SS       22     278.9800000 | DF     SUM_OF_SQUARES     MEAN_SQUARE       22     278.9800000     12.68090909       23     269.7550000     11.72847826       45     548.73500000     MOISTURE_CONTENT       C.V.     ROOT_MSE     MOISTURE_CONTENT       4.2098     3.42468659     81.3500000       DF     TYPE I SS     F_VALUEPR > F       22     278.9800000     1.08     0.4261       DF     TYPE III SS     F_VALUEPR > F |

#### DEPENDENT VARIABLE: MOISTURE CONTENT

| VARIABLE | MEAN  | MINIMUM<br>VALUE | MAXIMUM<br>VALUE | STANDARD<br>DEVIATION | C.V. |
|----------|-------|------------------|------------------|-----------------------|------|
|          |       | BRAND=TU         | -902             |                       |      |
| FSI      | 220.2 | 156.0            | 270.0            | 33.2                  | 15.1 |
| PERWF    | 4.4   | 1.0              | 10.0             | 2.5                   | 55.9 |
| MC       | 80.9  | 80.7             | 81.1             | 0.3                   | 0.3  |
|          |       | BRAND=K          | wik Plus/BA-7    | 7                     |      |
| PSI      | 27.9  | 10.0             | 65.0             | 17.8                  | 63.7 |
| PERWF    | 0.0   | 0.0              | 0.0              | 0.0                   | •    |
| MC       | 82.5  | 81.2             | 83.9             | 1.9                   | 2.3  |
|          |       | BRAND=DI         | ER-331           |                       |      |
| FSI      | 203.4 | 144.0            | 254.0            | 43.3                  | 21.3 |
| PERWF    | 21.0  | 10.0             | 40.0             | 9.7                   | 46.0 |
| MC       | 77.8  | 74.3             | 81.4             | 5.0                   |      |
|          |       | BRAND=Ca         | ecure 3-800      |                       |      |
| FSI      | 71.7  | 40.0             | 103.0            | 20.5                  | 28.6 |
| PERWF    | 0.0   | 0.0              | 0.0              | 0.0                   | •    |
| MC       | 79.4  | 77.8             | 81.1             | 2.3                   | 2.9  |
|          |       | BRAND=Ep         | on 282/V40       |                       |      |
| FSI      | 92.8  |                  | 124.0            | 19.8                  | 21.4 |
| FERWF    | 0.0   | 0.0              | 0.0              | 0.0                   | •    |
| MC       | 79.1  | 78.6             | 79.7             | 0.8                   | 1.0  |
|          |       | BRAND=EPO        | oxylite 3351-    |                       |      |
| PSI      | 392.8 | 308.0            | 459.0            | 48.0                  | 12.2 |
| PERWF    | 4.5   | 2.0              | 10.0             | 2.8                   | 62.2 |
| MC       | 82.8  | 81.5             | 84.2             | 1.9                   | 2.3  |
|          |       | BRAND=88         | × 1630-1         |                       |      |
| PSI      | 242.0 |                  |                  | 55.3                  | 22.8 |
| PERWF    | 10.6  | 5.0              | 20.0             | 5.9                   | 55.9 |
| MC       | 86.5  | 84.3             | 88.8             | 3.2                   | 3.7  |

#### STATISTICS from SHEARBLOCK TESTS

|       |       | BRAND=88    | × 1632       |       |       |
|-------|-------|-------------|--------------|-------|-------|
| PSI   | 252.4 | 133.3       | 439.2        | 97.2  | 38.5  |
| PERWF |       |             |              | 5.4   | 76.8  |
| MC    | 82.2  | 0.0<br>81.4 | 83.1         | 1.2   | 1.5   |
|       |       | BRAND=EPO   | weld 3673    |       |       |
| FSI   | 96.3  |             | 182.6        | 53.4  | 55.4  |
| FERWF | 3.8   | 0.0         | 10.0<br>85.3 | 2.9   | 75.3  |
| MC    | 82.5  | 79.7        | 85.3         | 4.0   | 4.8   |
|       |       | BRAND=HM    | 964          |       |       |
| FSI   | 64.5  | 50.0        | 75.8         | 8.0   | 12.4  |
| PERWF | 5.8   | 5.0         | 10.0         | 1.8   | 30.2  |
| MC    | 82.8  | 80.7        | 85.0         | 3.0   | 3.7   |
|       |       | BRAND=Le    | ebond 23-205 |       |       |
| PSI   | 122.4 | 54.3        | 208.3        | 56.6  | 46.2  |
| FERWF | 6.0   | 5.0         | 10.0         | 2.1   | 35.1  |
| MC    | 82.0  | 81.1        | 92.9         | 1.3   | 1.6   |
|       |       | BRAND=LE    | -1200        |       |       |
| FSI   | 201.4 | 161.0       |              | 18.4  |       |
| PERWF | 0.9   | 0.0<br>84.0 | 5.0<br>86.0  | 1.7   | 192.1 |
| MC    | 85.0  | 84.0        | 86.0         | 1.4   | 1.7   |
|       |       | BRAND=Mar   | Роху С2-30   |       |       |
| FSI   | 161.3 | 91.7        | 257.3        | 53.3  | 33.0  |
| PERWF | 11.1  | 8.0         | 20.0         | 3.3   | 30.2  |
| MC    | 81.2  | 81.1        | 81.3         | 0.1   | 0.2   |
|       |       | BRAND=Mar   | Роху С2-31   |       |       |
| FSI   | 440.0 | 263.2       | 675.6        | 137.4 | 31.2  |
| PERWF | 27.0  | 20.0        | 40.0         | 6.3   | 23.4  |
| MC    | 81.5  | 79.8        | 83.3         | 2.5   | 3.0   |
|       |       | BRAND=Pli   | onail        |       |       |
| PSI   | 26.1  | 5.0         | 58.0         | 14.6  | 55.9  |
| PERWF | 0.0   | 0.0         | 0.0          | 0.0   | •     |
| MC    | 78.3  | 77.2        | 79.5         | 1.6   | 2.1   |

| BRAND=RP-20 |       |               |                             |            |       |
|-------------|-------|---------------|-----------------------------|------------|-------|
| PSI         | 89.8  | 0.0           | 183.0                       | 77.2       | 56.0  |
| PERWF       |       | 0.0           | 0.0                         | 0.0        |       |
| MC          | 83.5  | 0.0<br>83.4   | 83.7                        | 0.2        | 0.3   |
|             |       | BRAND=R       | 1.4                         |            |       |
|             |       | BKAND-K.      | -14                         |            |       |
| FSI         | 201.6 | 0.0           | 546.0                       | 144.8      | 71.9  |
| PERWF       | 0.5   | 0.0           | 5.0                         | 1.6        | 315.2 |
| MC          | 84.0  | 83.7          | 84.4                        | 0.5        | 0.6   |
|             |       | BRAND=Si      | kadur 31                    |            |       |
| FSI         | 360.4 | 267.0         | 557 0                       | 81.5       | 22.6  |
| PERWF       |       | 20/10         | 15 0                        | 5.1        | 75.2  |
|             | 0.8   | 0.0<br>78.1   | 13+0                        | 4.8        | /3.2  |
| MC          | 81.5  | /8.1          | 84.7                        | 4+8        | 3.7   |
|             |       | BRAND=Si      | kadur 33                    |            |       |
| FSI         | 18.3  | 0.0           | 58.0                        | 22.4       | 122.5 |
| PERWF       | 0.0   | 0.0           |                             | 0.0        | •     |
| MC          | 83.1  | 81.9          | 84.4                        | 1.8        | 2.1   |
|             |       | BRAND=WP      | -2200                       |            |       |
|             |       | Litter D - Wi |                             |            |       |
| PSI         | 0.2   | 0.0           | 2.0                         | 0.6        | 316.2 |
| PERWF       | 0.0   | 0.0           | 0.0                         | 0.0        | •     |
| MC          | 78.3  | 77.2          | 79.5                        | 1.6        | 2.1   |
|             |       | BRAND=W       | 878                         |            |       |
|             | 22/ 2 |               |                             | 7/7        | 24.4  |
| PSI         |       | 175.0         | 420.0                       | /0.3       | 26.5  |
| FERWE       | 13.0  | 7.0<br>75.7   | 25.0                        | 5.9<br>5.9 | 45.6  |
| MC          | 79.8  | 75.7          | 84.0                        | 5.9        | 7.4   |
|             |       | BRAND=Sc      | otch Weld 2216 <sup>.</sup> |            |       |
| PSI         | 51.1  | 31.0          | 72.0                        | 13.3       | 26.0  |
| PERWF       | 0.0   | 0.0           | 0.0                         | 0.0        |       |
| MC          | 75.7  | 68.0          | 83.4                        | 10.9       | 14.4  |
|             |       |               |                             |            |       |
|             |       | BRAND=Sc      |                             |            |       |
| PSI         | 88.8  | 70.0          | 112.0                       | 13.9       | 15.6  |
| PERWF       | 11.5  | 5.0           | 20.0                        | 4.7        | 40.6  |
| MC          | 79.9  |               |                             | 0.1        | 0.2   |
|             |       |               |                             |            |       |

### GRAND MEAN STATISTICS for SHEARBLOCK TEST

| VARIABLE | MEAN  | MINIMUM<br>VALUE | MAXIMUM<br>VALUE | STANDARD<br>Deviation | C.V.  |
|----------|-------|------------------|------------------|-----------------------|-------|
| PSI      | 161.4 | 0.0              | 675.6            | 135.7                 | 84.1  |
| PERWF    | 5.8   | 0.0              | 40.0             | 7.9                   | 136.3 |
| MC       | 81.3  | 68.0             | 88.8             | 3.5                   | 4.3   |

APPENDIX C

Fastener Quality Index

#### FASTENER QUALITY ANALYSIS



| 1        | Nail No.:       | 1076                                                   |
|----------|-----------------|--------------------------------------------------------|
|          | s Submitt       |                                                        |
| c. nali  | .s Submitte     |                                                        |
| 3 Nail   | identifi        | Canton, Massachusetts                                  |
|          |                 | length x wire diameter in inches): $2.25 \times 0.113$ |
| 4. Adii  |                 | 5. Nail Type: A. Stiff-stock B. Hardened y             |
|          |                 | 6. Shank Deformation:                                  |
|          |                 | A. Annularly Threaded                                  |
|          |                 | B. Helically Threaded X                                |
| <b>-</b> |                 | C. Fluted                                              |
| Nail     | MIBANT          | D. Twisted                                             |
|          | Angle           | 7. Thread Characteristics:                             |
|          |                 | A. Length (inches)                                     |
|          | (degrees)       | B. No. of Flutes 4                                     |
| 1        | 27              | C, Helixes/Inch                                        |
| 2        | 26              | D. Thread Angle (deg.) 60                              |
| 3        | 25              | 8. Date of Receipt at VPI: January 27, 1976            |
| 4        | 26              | 9. Date of Test: January 28, 1976                      |
| 5        | 25              | 10. Lab Report By: J.W. Akers                          |
| 6        | 28              | 11. General Appearance:                                |
| 7        | 26              |                                                        |
| 3        | 26              |                                                        |
| 9        | 28              |                                                        |
| 10       |                 |                                                        |
| 11       | 26              | MIBANT Angle Frequency Distribution                    |
| 12       | 25              | -                                                      |
| 13       | 25              |                                                        |
| 114      | 26              |                                                        |
| 15       | 28              | 20                                                     |
| 16       | $\frac{24}{27}$ |                                                        |
| 18-      | 27              |                                                        |
| 19-1     | 27              |                                                        |
| 20       |                 |                                                        |
| 20       | 28              |                                                        |
| 14.1     | 28              |                                                        |

С

Bend Angle Degrees

26

27

- - -

24 27 25 27 Avg. 26 Min. 25 Max. 28

23

## APPENDIX D

## Marpoxy Technical Service Bulletin

|                                             | • MARPOXY C2-31A/B                                                                                                                                                                                                                                                                           | (Typical Properties)                                             |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| SUGGESTED<br>USE                            | Two Component Adhesive for Green Lumber                                                                                                                                                                                                                                                      | •                                                                |
| OUTSTANDING<br>FEATURES<br>(Typical)        | Room temperature curing system (as low<br>Good adhesion to wet surfaces.                                                                                                                                                                                                                     | ая 40°F)                                                         |
| PHYSICAL                                    | Description: thick, beige, non-sagging materi                                                                                                                                                                                                                                                | al                                                               |
| PROPERTIES<br>(Typical)                     | Solids: - Wt. Gal. 7.61b/ga. Ph: -                                                                                                                                                                                                                                                           | Viscosity: 5.73x10 <sup>5</sup> cps                              |
| (Typical)                                   | Catalyst Required: C2-31B                                                                                                                                                                                                                                                                    | Flash Point: < 200° J                                            |
| APPLICATION<br>PROCEDURE<br>(Typical)       | How to Apply: Apply with a stiff brush, spa<br>How Much:<br>Drying Time / Temp:                                                                                                                                                                                                              | tula, or spreader.                                               |
|                                             | Curing Time Temp: 24 hours @ room tempera                                                                                                                                                                                                                                                    | ture                                                             |
|                                             | Curing Time Temp: 24 hours @ room tempera<br>Other Instructions:<br>Working life of 150 g mass is approxima<br>temperature.                                                                                                                                                                  |                                                                  |
| HANDLING                                    | Other Instructions:<br>Working life of 150 g mass is approxima                                                                                                                                                                                                                               | tely 1-1/4 hours at room                                         |
| HANDLING<br>& STORAGE<br>( <i>Typical</i> ) | Other Instructions:<br>Working life of 150 g mass is approxima<br>temperature.<br>Diluent: Degree:                                                                                                                                                                                           | tely 1-1/4 hours at room                                         |
| & STORAGE                                   | Other Instructions: Working life of 150 g mass is approximatemperature.   Diluent: Degree:   Cleaner - Wet: Alcohol                                                                                                                                                                          | tely 1-1/4 hours at room                                         |
| & STORAGE                                   | Other Instructions: Working life of 150 g mass is approximate temperature.   Diluent: Degree:   Cleaner - Wet: Alcohol   Stability Cleaner                                                                                                                                                   | tely 1-1/4 hours at room<br>- Dry:                               |
| & STORAGE<br>( <i>Typical</i> )             | Other Instructions: Working life of 150 g mass is approximate temperature.   Diluent: Degree:   Cleaner - Wet: Alcohol   Stability Package in metal cans or glass j.                                                                                                                         | - Dry:<br>ars.<br>life: 6 months.<br>repeated contact with skin. |
| & STORAGE                                   | Other Instructions:   Working life of 150 g mass is approximate temperature.     Diluent:   Degree:     Cleaner - Wet:   Alcohol     Stability   Packageng:     Package:   Store at room temperature.     Storage:   Store at room temperature.     Do not get in eyes.   Avoid prolonged or | - Dry:<br>ars.<br>life: 6 months.<br>repeated contact with skir  |



coatings & adhesives **key polymer corp.** 

69

#### APPENDIX E

Statistics for Moisture Content at Time of Assembly -Pallet Joints Moisture Content Data at Time of Assembly ANOVA Procedure for Variable Moisture Content - Pallet Corner Joints ANOVA Procedure for Variable Specific Gravity - Pallet Corner Joints ANOVA Procedure for Variable Moisture Content - Joint Rotation Specimens ANOVA Procedure for Variable Specific Gravity - Joint Rotation Specimens Mean Statistics for Moisture Content and Specific Gravity at Time of Test - Joint Rotation Mean Statistics for Moisture Content and Specific Gravity at Time of Test - Pallet Corner Joints Raw Data for Moisture Content and Specific Gravity -Pallet Corner Joints

Raw Data for Moisture Content and Specific Gravity -Joint Rotation Specimens PALLET JOINTS STATISTICS FOR MOISTURE CONTENT AT TIME OF ASSEMBLY

| VARIABLE | MEAN  | MINIMUM<br>VALUE | MAXIMUM<br>VALUE | STANDARD<br>DEVIATION | C.V. |
|----------|-------|------------------|------------------|-----------------------|------|
| GREENWT  | 141.4 | 36.0             | 243.6            | 63.9                  | 45.2 |
| Ovendwt  | 80.0  | 19.2             | 147.0            | 36.5                  | 45.6 |

#### MOISTURE CONTENT DATA AT TIME OF ASSEMBLY for All Pallet Joint Specimens

| OBS | GREENWT | OVENDWT | MC      |
|-----|---------|---------|---------|
| 1   | 193.78  | 108.72  | 78.2377 |
| 2   | 201.24  | 112.42  | 79.0073 |
| 3   | 243.60  | 147.05  | 65.6579 |
| 4   | 206.38  | 114.14  | 80.8130 |
| 5   | 228.51  | 123.70  | 84.7292 |
| 6   | 230.73  | 122.64  | 88,1360 |
| 7   | 171.68  | 94.84   | 81.0207 |
| 8   | 201.35  | 117.41  | 71.4931 |
| 9   | 198.29  | 115.14  | 72.2164 |
| 10  | 196.81  | 114.19  | 72.3531 |
| 11  | 141.98  | 77.01   | 84.3657 |
| 12  | 145.98  | 81.20   | 79.7783 |
| 13  | 172.69  | 97.95   | 76.3042 |
| 14  | 156.39  | 91.26   | 71.3675 |
| 15  | 92.39   | 52.75   | 75.1469 |
| 16  | 187.89  | 109.53  | 71.5420 |
| 17  | 157.85  | 93.97   | 67.9791 |
| 18  | 36.05   | 19.17   | 88.0543 |
| 19  | 38.51   | 21.31   | 80.7133 |
| 20  | 41.46   | 23.53   | 76.2006 |
| 21  | 115.75  | 69.18   | 67.3171 |
| 22  | 95.71   | 51.13   | 87.1895 |
| 23  | 43.61   | 24.16   | 80.5050 |
| 24  | 102.24  | 56.05   | 82,4086 |
| 25  | 84.74   | 49.72   | 70.4344 |
| 26  | 36.33   | 20.69   | 75.5921 |
| 27  | 98.49   | 54.71   | 80.0219 |
| 28  | 93.08   | 52.92   | 75.8881 |
| 29  | 170.99  | 96.57   | 77.0633 |
| 30  | 157.19  | 86.85   | 80.9902 |

## ANDVA PROCEDURE for VARIABLE MOISTURE CONTENT for All Pallet Corner Joints

GENERAL LINEAR MODELS PROCEDURE

CLASS LEVEL INFORMATION

| CLASS    | LEVELS | VALUES        |
|----------|--------|---------------|
| TREATMNT | 3      | GLUE NAIL NAI |

| TREATMNT | 3 | GLUE | NAIL | NAILGLU |
|----------|---|------|------|---------|
|          |   |      |      |         |

NUMBER OF OBSERVATIONS IN DATA SET = 60

#### DEPENDENT VARIABLE: MOISTURE CONTENT

| SOURCE          | DF      | SUM OF SQUARES | MEAN    | SQUARE     | F VALUE |
|-----------------|---------|----------------|---------|------------|---------|
| MODEL           | 2       | 248.92686262   | 124.4   | 6343131    | 1.50    |
| ERROR           | 57      | 4734+23192045  | 83.0    | 5670036    | FR > F  |
| CORRECTED TOTAL | 59      | 4983.15878307  |         |            | 0.2321  |
|                 |         |                | MOISTU  | RE CONTENT |         |
| R-SQUARE        | C.V.    | ROOT MSE       | ł       | YEAN       |         |
| 0.049954        | 13.7874 | 9.11354488     | 66.10   | 0071565    |         |
| SOURCE          | DF      | TYPE I SS      | F VALUE | PR > F     |         |
| TREATMNT        | 2       | 248.92686262   | 1.50    | 0.2321     |         |
| SOURCE          | DF      | TYPE III SS    | F VALUE | PR > F     |         |
| TREATMNT        | 2       | 248.92686262   | 1.50    | 0.2321     |         |

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: MOISTURE CONTENT ALFHA=0.05 DF=57 MSE=83.0567 MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

| DUNCAN | GROUPING | MEAN   | N  | TREATMNT |
|--------|----------|--------|----|----------|
|        | A        | 67.608 | 24 | GLUE     |
|        | AA       | 67.191 | 18 | NAIL     |
|        | A<br>A   | 63.001 | 18 | NAILGLU  |

# ANOVA PROCEDURE for VARIABLE SPECIFIC GRAVITY for All Pallet Corner Joints

| CLASS    | LEVELS | VALUES            |
|----------|--------|-------------------|
| TREATMNT | 3      | GLUE NAIL NAILGLU |

NUMBER OF OBSERVATIONS IN DATA SET = 60

DEPENDENT VARIABLE: SPECIFIC GRAVITY

| SOURCE          | DF     | SUM OF SQUARES | MEA     | N SQUARE            | F VALUE |
|-----------------|--------|----------------|---------|---------------------|---------|
| MODEL           | 2      | 0.00168474     | ٥.      | 00084237            | 0.44    |
| ERROR           | 57     | 0.10974674     | 0.      | 00192538            | PR > F  |
| CORRECTED TOTAL | 59     | 0.11143148     |         |                     | 0.6479  |
| R-SQUARE        | c.v.   | ROOT MSE       | SPECI   | FIC GRAVITY<br>MEAN |         |
| 0.015119        | 6.6977 | 0.04387917     | ٥.      | 65514186            |         |
| SOURCE          | DF     | TYPE I SS      | F VALUE | PR > F              |         |
| TREATMNT        | 2      | 0.00168474     | 0.44    | 0.6478              |         |
| SOURCE          | DF     | TYPE III SS    | F VALUE | PR > F              |         |
| TREATMNT        | 2      | 0.00168474     | 0.44    | 0.6478              |         |

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: SPECIFIC GRAVITY NOTE: THIS TEST CONTROLS THE TYPE I COMPARISONWISE ERROR RATE, NOT THE EXPERIMENTWISE ERROR RATE. ALPHA=0.05 DF=57 MSE=.0019254 MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

| DUNCAN | GROUPING | MEAN    | N  | TREATMNT |
|--------|----------|---------|----|----------|
|        | A        | 0.66189 | 18 | NAILGLU  |
|        | A        | 0.65629 | 18 | NAIL     |
|        | A<br>A   | 0.64922 | 24 | GLUE     |

#### ANOVA PROCEDURE for VARIABLE MOISTURE CONTENT for ALL JOINT ROTATION SPECIMENS

| CLASS    | LEVELS | VALUES            |
|----------|--------|-------------------|
| TREATMNT | 3      | GLUE NAIL NAILGLU |

NUMBER OF OBSERVATIONS IN DATA SET = 48

DEPENDENT VARIABLE: MOISTURE CONTENT

| SOURCE          | DF      | SUM OF SQUARES | MEAI    | N SQUARE            | F VALUE |
|-----------------|---------|----------------|---------|---------------------|---------|
| MODEL           | 2       | 276.41683479   | 138.    | 20841740            | 1.37    |
| ERROR           | 45      | 4534.01673958  | 100.    | 75592755            | PR > F  |
| CORRECTED TOTAL | 47      | 4810.43357437  |         |                     | 0.2641  |
| R-SQUARE        | C.V.    | ROOT MSE       | MOIST   | JRE CONTENT<br>MEAN |         |
| 0.057462        | 15.4979 | 10.03772522    | 64.     | 76840917            |         |
| SOURCE          | DF      | TYPE I SS      | F VALUE | PR > F              |         |
| TREATMNT        | 2       | 276.41683479   | 1.37    | 0.2641              |         |
| SOURCE          | IJF     | TYPE III SS    | F VALUE | PR > F              |         |
| TREATMNT        | 2       | 276.41683479   | 1.37    | 0.2641              |         |

DUNCAN'S MULTIFLE RANGE TEST FOR VARIABLE: MOISTURE CONTENT ALFHA=0.05 DF=45 MSE=100.756 MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

| DUNCAN | GROUFING | MEAN   | N  | TREATMNT |
|--------|----------|--------|----|----------|
|        | A        | 67.627 | 16 | GLUE     |
|        | A        | 64.922 | 16 | NAIL     |
|        | A<br>A   | 61.755 | 16 | NAILGLU  |

#### ANOVA PROCEDURE for VARIABLE MOISTURE CONTENT for All Joint Rotation specimens

| CLASS    | LEVELS | VALUES            |
|----------|--------|-------------------|
| TREATMNT | 3      | GLUE NAIL NAILGLU |

NUMBER OF OBSERVATIONS IN DATA SET = 48

DEPENDENT VARIABLE: MOISTURE CONTENT

| SOURCE          | ١F      | SUM OF SQUARES | MEAN SQUARE     | F VALUE |
|-----------------|---------|----------------|-----------------|---------|
| MODEL           | 2       | 276.41683479   | 138.20841740    | 1.37    |
| ERROR           | 45      | 4534.01673958  | 100.75592755    | PR > F  |
| CORRECTED TOTAL | 47      | 4810.43357437  |                 | 0.2641  |
|                 |         |                | MOISTURE CONTEN | т       |
| R-SQUARE        | C.V.    | ROOT MSE       | MEAN            |         |
| 0.057462        | 15.4979 | 10.03772522    | 64.76840917     |         |
|                 |         |                |                 |         |
| SOURCE          | DF      | TYPE I SS      | F VALUE PR > F  |         |
| TREATMNT        | 2       | 276.41683479   | 1.37 0.2641     |         |
|                 |         |                |                 |         |
| SOURCE          | DF      | TYPE III SS    | F VALUE PR > F  |         |
| TREATMNT        | 2       | 276.41683479   | 1.37 0.2641     |         |

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: MOISTURE CONTENT ALPHA=0.05 DF=45 MSE=100.756 MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

| DUNCAN | GROUPING | MEAN   | N  | TREATMNT |
|--------|----------|--------|----|----------|
|        | A        | 67.627 | 16 | GLUE     |
|        | A<br>A   | 64.922 | 16 | NAIL     |
|        | A<br>A   | 61.755 | 16 | NAILGLU  |

#### ANOVA PROCEDURE for VARIABLE SPECIFIC GRAVITY for All Joint Rotation specimens

| CLASS    | LEVELS | VALUES      |        |
|----------|--------|-------------|--------|
| TREATMNT | 3      | GLUE NAIL N | AILGLU |

NUMBER OF OBSERVATIONS IN DATA SET = 48

#### DEFENDENT VARIABLE: SPECIFIC GRAVITY

| SOURCE          | DF     | SUM OF SQUARES | MEAN SQUARE             | F VALUE |
|-----------------|--------|----------------|-------------------------|---------|
| MODEL           | 2      | 0.00386901     | 0.00193451              | 0,77    |
| ERROR           | 45     | 0,11286036     | 0.00250801              | PR > F  |
| CORRECTED TOTAL | 47     | 0.11672937     |                         | 0.4684  |
| R-SQUARE        | C.V.   | ROOT MSE       | SPECIFIC GRAVIT<br>MEAN | Y       |
| 0.033145        | 7.7916 | 0.05008002     | 0.64274533              |         |
| SOURCE          | DF     | TYPE I SS      | F VALUE PR > F          |         |
| TREATMNT        | 2      | 0.00386901     | 0.77 0.4684             |         |
| SOURCE          | DF     | TYPE III SS    | F VALUE PR > F          |         |
| TREATMNT        | 2      | 0.00386901     | 0.77 0.4684             |         |

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: SPECIFIC GRAVITY ALPHA=0.05 DF=45 MSE=0.002508 MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

| DUNCAN | GROUPING | MEAN    | N  | TREATMNT |
|--------|----------|---------|----|----------|
|        | A        | 0.65427 | 16 | NAILGLU  |
|        | A        | 0.64161 | 16 | GLUE     |
|        | A<br>A   | 0.63236 | 16 | NAIL     |

#### ROTATION MODULUS MEAN STATISTICS for MOISTURE CONTENT AND SPECIFIC GRAVITY AT TIME OF TESTING

| VARIABLE      | MEAN                     | MAXIMUM<br>VALUE                   | MINIMUM<br>VALUE | STANDARD<br>DEVIATION | C.V.            |
|---------------|--------------------------|------------------------------------|------------------|-----------------------|-----------------|
|               |                          | SECTION                            | I=DECKBOARD      |                       |                 |
| MC<br>SPGRAV  | 56.599<br>0.666          | 65.986<br>0.868                    | 45.628<br>0.616  | 5.649<br>0.054        | 9.981<br>8.150  |
|               |                          | SECTION                            |                  |                       |                 |
| MC<br>SF'GRAV | 72 <b>•938</b><br>_0•619 | 81.594<br>0.692                    | 57.824<br>0.570  | 6.160<br>0.031        | 8.446<br>5.029  |
|               |                          | NTENT AND SPECI<br>ROTATION MODULU |                  | GRAND MEAN            |                 |
| VARIABLE      | MEAN                     | MAXIMUM<br>VALUE                   | MINIMUM<br>VALUE | STANDARD<br>DEVIATION | C.V.            |
| MC<br>SFGRAV  | 64.768<br>0.643          | 81.594<br>0.868                    | 45.628<br>0.570  | 10.117<br>0.050       | 15.620<br>7.754 |

#### PALLET CORNER JOINTS AT TIME OF TESTING MEAN STATISTICS for MOISTURE CONTENT AND SPECIFIC GRAVITY

| VARIABLE      | MEAN            | MAXIMUM<br>VALUE | MINIMUM<br>VALUE | STANDARD<br>DEVIATION | C.V.            |
|---------------|-----------------|------------------|------------------|-----------------------|-----------------|
|               |                 | - SECTION=DEC    | KBOARD           |                       |                 |
| MC<br>SF'GRAV | 61.539<br>0.674 | 78.194<br>0.748  | 48.446<br>0.610  | 6.263<br>0.035        | 10.177<br>5.142 |
|               |                 | - SECTION=STR    | INGER            |                       |                 |
| MC<br>SFGRAV  | 75.223<br>0.617 | 83.765<br>0.710  | 52.441<br>0.581  | 7.096<br>0.033        | 9.433<br>5.278  |

# GRAND MEAN STATISTICS MOISTURE CONTENT AND SPECIFIC GRAVITY OF PALLET CORNER JOINTS AT TIME OF TESTING

| VARIABLE | MEAN   | MAXIMUM<br>VALUE | MINIMUM<br>VALUE | STANDARD<br>DEVIATION | c.v.   |
|----------|--------|------------------|------------------|-----------------------|--------|
| MC       | 66.101 | 83.765           | 48.446           | 9.190                 | 13.903 |
| SFGRAV   | 0.655  | 0.748            | 0.581            | 0.043                 | 5.633  |

|          |         |         |                    |                 | 1 12311100     |                |              |                    |                      |
|----------|---------|---------|--------------------|-----------------|----------------|----------------|--------------|--------------------|----------------------|
| OBS      | SPECNUM | SECTION | TREATMNT           | GREENWT         | OVENDWT        | OVENWT         | DISP         | MC                 | SFGRAV               |
| 1        | 3       | S       | NAIL               | 119.98          | 69.54          | 69.54          | 110 7        | 77 5770            | 0.580952             |
| 2        | 3       | D       | NAIL               | 68.03           | 42.38          | 42.38          | 64.5         | 60.5238            | 0.657054             |
| 3        | 3       | Ď       | NAIL               | 50.91           | 32.43          | 32.43          | 48.5         | 56.9843            | 0.668660             |
| 4        | 4       | ŝ       | NAIL               | 68.43           | 38.87          | 38.87          | 65.8         | 76.0484            | 0.590729             |
| Ś        | 4       | ă       | NAIL               | 65.59           | 41.58          | 41.58          | 58.1         | 57.7441            | 0.715663             |
| 6        | 4       | D       | NAIL               | 75.37           | 47.62          | 47.62          | 66.1         | 58,2738            | 0.720424             |
| 7        | 5       | ŝ       | NAIL               | 145.89          | 83.33          | 83.33          | 141.8        | 75.0750            | 0.587659             |
| 8        | รี      | Ď       | NAIL               | 78.78           | 47.49          | 47.49          | 71.0         | 65.8876            | 0.668873             |
| 9        | 5       | D       | NAIL               | 63.33           | 38.91          | 38.91          | 56.5         | 62.7602            | 0.688673             |
| 10       | 6       | S       | NAIL               | 109.62          | 60.54          | 60.54          | 100.5        | 81.0704            | 0.602388             |
| 11       | 6       | D       | NAIL               | 56.08           | 32.60          | 32.60          | 48.7         | 72.0245            | 0.669405             |
| 12       | 6       | D       | NAIL               | 53.95           | 32.15          | 15.34          | 22.3         | 67.8072            | 0.687892             |
| 13       | 7       | S       | NAIL               | 91.89           | 52.92          | 52.92          | 89.9         | 73.6395            | 0.588654             |
| 14       | 7       | D       | NAIL               | 71.81           | 44.50          | 44.50          |              | 61.3708            | 0.692068             |
| 15       | 7       | D       | NAIL               | 93.12           | 57.03          | 57,03          | 78.4         |                    | 0.727423             |
| 16       | 8       | S       | NAIL               | 96.06           | 56.17          | 56.17          | 95.5         | 71.0166            | 0.588168             |
| 17       | 8       | D       | NAIL               | 63.19           | 38.27          | 38.27          | 54.7         |                    | 0.699634             |
| 18       | 8       | D       | NAIL               | 65.46           | 38.90          | 38,90          | 57.3         |                    | 0.678883             |
| 19       | 3       | S       | NAILGLU            | 109.56          | 60.66          | 66.66          | 104.3        |                    | 0.639118             |
| 20       | 3       | D       | NAILGLU            | 77.33           | 49.18          | 49.18          | 68.2         | 57.2387            | 0.721114             |
| 21       | 3       | D       | NAILGLU            | 64.30           | 41.16          | 19.54          |              | 56.2196            | 0.731835             |
| 22<br>23 | 4       | S       | NAILGLU            | 61.52           | 36.02          | 36.02          |              | 70.7940            | 0.626435             |
|          | 4       | D       | NAILGLU            | 48.15           | 31.90          | 31.90          | 49.1         |                    | 0.649695             |
| 24<br>25 | 4<br>5  | D<br>S  | NAILGLU            | 46.33           | 31.21          | 31.21          | 46.8         | 48.4460            | 0.666890             |
| 26       | 5       | D       | NAILGLU<br>NAILGLU | 137.07<br>81.83 | 74.59<br>51.40 | 74.59<br>25.36 | 127.9        | 83.7646            | 0.583190<br>0.716384 |
| 27       | 5       | D       | NAILGLU            | 88.94           | 55.96          | 23.38          |              | 58.9350            | 0.748128             |
| 28       | 6       | S       | NAILGLU            | 105.02          | 59.38          | 59.38          |              | 76.8609            | 0.592615             |
| 29       | 6       | D       | NAILGLU            | 52.88           | 33.21          | 33.21          | 48.1         |                    | 0.690437             |
| 30       | 6       | D       | NAILGLU            | 58.67           | 37.84          | 37.84          | 50.9         |                    | 0.743418             |
| 31       | 7       | ŝ       | NAILGLU            | 123.87          | 73.00 .        | 73.00          | 117.7        |                    | 0.620221             |
| 32       | 7       | ñ       | NAILGLU            | 77.48           | 48.39          | 48.39          |              | 60.1157            | 0.666529             |
| 33       | 7       | D       | NAILGLU            | 53.45           | 34.19          | 34.19          | 52.0         |                    | 0.657500             |
| 34       | 8       | S       | NAILGLU            | 77.24           | 42.40          | 42.40          | 71.1         | 82.1698            | 0.596343             |
| 35       | 8       | D       | NAILGLU            | 53.50           | 34.18          | 34.18          | 53.4         | 56.5243            | 0.640075             |
| 36       | 8       | D       | NAILGLU            | 39.34           | 25.90          | 25.90          | 41.5         | 51.8919            | 0.624096             |
| 37       | 1       | S       | GLUE               | 49.90           | 29.68          | 29.68          |              | 68,1267            | 0.641037             |
| 38       | 1       | D       | GLUE               | 53.35           | 31.62          | 31.62          |              | 68,7223            | 0.650617             |
| 39       | 1       | D       | GLUE               | 34.91           | 22,25          | 22.25          |              | 56.8989            | 0.643064             |
| 40       | 2       | S       | GLUE               | 53.49           | 29.51          | 29.51          | 45.6         |                    | 0.647149             |
| 41       | 2       | D       | GLUE               | 75.77           | 46.20          | 46.20          |              |                    | 0.639889             |
| 42       | 2       | D       | GLUE               | 43.22           | 26.40          | 26.40          | 39.8         |                    | 0.663317             |
| 43<br>44 | 3<br>3  | s<br>D  | GLUE<br>GLUE       | 60.13<br>53.28  | 34.41<br>29.90 | 34.41          | 52.7<br>45.1 | 74.7457<br>78.1940 | 0.652941<br>0.662971 |
| 45       | 3       | D       | GLUE               | 43.76           | 27.01          | 29.90<br>27.01 |              | 62.0141            | 0.673566             |
| 46       | 4       | S       | GLUE               | 63.16           | 34.48          | 34.48          | 58.2         | 83.1787            | 0.592440             |
| 47       | 4       | D<br>D  | GLUE               | 40.88           | 23.99          | 23.99          | 39.2         | 70.4043            | 0.61990              |
| 48       | 4       | D       | GLUE               | 34.74           | 21.90          | 21.90          | 35.4         |                    | 0.68644              |
| 49       | 5       | S       | GLUE               | 63.55           | 35.59          | 35.59          | 56.5         | 78.5614            | 0.69912              |
| 50       | 5       | D       | GLUE               | 57.73           | 34.65          | 34.65          | 51.3         | 66.6089            | 0.65439              |
| 51       | 5       | D       | GLUE               | 68.14           | 41.83          | 41.83          | 61.8         | 62.8974            | 0.66861              |
| 52       | 6       | S       | GLUE               | 81.67           | 45.78          | 45.78          | 72.2         | 78.3967            | 0.64072              |
| 53       | 6       | D       | GLUE               | 47.33           | 27.51          | 27.51          | 45.1         | 72.0465            | 0.69978              |
| 54       | 6       | D       | GLUE               | 48.33           | 30.82          | 30.82          | 45.2         | 56.8138            | 0.61858              |
| 55       | 2       | S       | GLUE               | 45.58           | 29.90          | 29,90          | 42.1         | 52.4415            | 0.70214              |
| 56       | 7       | D       | GLUE               | 37.71           | 22.92          | 22.92          | 34.2         | 64.5288            | 0.60175              |
| 57       | 7       | D       | GLUE               | 47.81           | 29.98          | 29.98          | 47.4         | 59.4730            | 0.62489              |
| 58<br>59 | 8<br>8  | SD      | GLUE               | 86.51           | 49.58          | 49.58          | 78.8         | 74.4857            | 0.69188              |
| 59<br>60 | 8       | D       | GLUE<br>GLUE       | 76.94           | 45.31<br>36.28 | 45.31<br>36.28 | 68.1         | 69.8080<br>56.6428 | 0.65345              |
| 50       | 0       | U       | ULUE               | 56.83           | J0+20          | 0200           | 0400         | JO • 0 * 40        | V+0014V              |
|          |         |         |                    |                 |                |                |              |                    |                      |

MOISTURE CONTENT AND SPECIFIC GRAVITY-FALLET CORNER JOINTS AT TIME of TESTING

|          |     | ROTAT    | CON MODUL | _US |          |         |
|----------|-----|----------|-----------|-----|----------|---------|
| RAW DATA | for | MOISTURE | CONTENT   | AND | SPECIFIC | GRAVITY |

| OBS | SPECNUM | SECTION | TREATMNT | GREENWT | OVENDWT | OVENWT | DISP  | MC      | SFGRAV   |
|-----|---------|---------|----------|---------|---------|--------|-------|---------|----------|
| 1   | 1       | S       | GLUE     | 48.30   | 27.03   | 27.03  | 41.7  | 78.6903 | 0.648201 |
| 2   | 1       | D       | GLUE     | 28.59   | 17.80   | 8.94   | 12.6  | 60.6180 | 0.709524 |
| 3   | 2       | s       | GLUE     | 49.52   | 28.58   | 28.58  |       |         | 0.692010 |
| 4   | 2       | D       | GLUE     | 38.99   | 23.49   | 23.49  | 37.1  | 65,9855 | 0.633154 |
| 5   | 3       | ŝ       | GLUE     | 40.60   | 23.33   | 23.33  | 35.6  | 74.0249 | 0.655337 |
| 6   | 3       | D       | GLUE     | 24.90   | 15.26   | 15.26  | 24.4  | 63.1717 |          |
| 7   | 4       | S       | GLUE     | 82.11   | 47.25   | 47.25  |       | 73.7778 | 0.662693 |
| 8   | 4       | D       | GLUE     | 40.01   | 26.40   | 26.40  | 35.1  | 51.5530 | 0.752137 |
| 9   | 5       | S       | GLUE     | 27.51   | 15.43   | 15.43  | 25.2  | 78.2890 | 0.612302 |
| 10  | 5       | Ď       | GLUE     | 31.96   | 20.53   | 20.53  | 32.0  | 55.6746 | 0.641562 |
| 11  | 6       | S       | GLUE     | 48.54   | 26.73   | 26.73  |       | 81.5937 | 0.577322 |
| 12  | 6       | D       | GLUE     | 30.73   | 19.50   | 19.50  | 30.6  | 57.5897 | 0.637255 |
| 13  | 7       | S       | GLUE     | 85.07   | 47.17   | 47.17  |       | 80.3477 | 0.577356 |
| 14  | 7       | D       | GLUE     | 40.04   | 26.45   | 13.23  | 21.2  | 51.3800 | 0.624057 |
| 15  | 8       | S       | GLUE     | 61.69   | 34.80   | 34.80  |       | 77.2701 |          |
| 16  | 8       | D       | GLUE     | 36.16   | 22.77   | 22,77  | 35.2  | 58.8054 | 0.646875 |
| 17  | 1       | S       | NAIL     | 76.09   | 42.16   | 39.23  |       | 80.4791 |          |
| 18  |         | D       |          |         |         |        |       |         |          |
|     | 1       | S       | NAIL     | 17.34   | 10.46   | 34.80  |       |         | 0.625899 |
| 19  | 2       | D       | NAIL     | 98.05   | 56.05   | 43.91  |       | 74.9331 | 0.599045 |
| 20  | 2       |         | NAIL     | 18.89   | 11.56   | 34.94  |       | 63.4083 | 0.641101 |
| 21  | 3<br>3  | S       | NAIL     | 76.51   | 44.32   | 35.35  |       | 72.6309 |          |
| 22  |         | D       | NAIL     | 33.83   | 20.60   | 32.13  |       | 64.2233 | 0.662474 |
| 23  | 4       | S       | NAIL     | 162.52  | 91.27   | 42.08  | 69.9  | 78.0651 | 0.602003 |
| 24  | 4       | D       | NAIL     | 32.20   | 20.26   | 30.61  | 49.4  | 58.9339 | 0.619636 |
| 25  | 5       | S       | NAIL     | 111.63  | 66.06   | 55.85  | 91.2  | 68.9827 | 0.612390 |
| 26  | 5       | D       | NAIL     | 46.13   | 30.42   | 21.05  | 30.3  | 51.6437 | 0.694719 |
| 27  | 6       | S       | NAIL     | 78.69   | 44.15   | 37.69  | 65.8  | 78.2333 | 0.572796 |
| 28  | 6       | D       | NAIL     | 54.83   | 35.97   | 36.81  | 52.7  | 52.4326 | 0.698482 |
| 29  | 7       | S       | NAIL     | 106.00  | 65.36   | 36.43  |       | 62.1787 | 0.629188 |
| 30  | 7       | E)      | NAIL     | 42.53   | 27.94   | 29.61  | 43.7  |         | 0.677574 |
| 31  | 8       | S       | NAIL     | 57.03   | 35.01   | 45.42  |       |         | 0.609664 |
| 32  | 8       | D       | NAIL     | 47.99   | 31.63   | 30.06  |       |         | 0.615984 |
| 33  | 1       | S       | NAILGLU  | 47.61   | 28.54   | 28.54  |       |         | 0.587243 |
| 34  | 1       | D       | NAILGLU  | 29.90   | 18.83   | 18.83  | 21.7  | 58.7892 | 0.867742 |
| 35  | 2       | S       | NAILGLU  | 109.29  | 63.36   | 63,36  | 105.8 | 72.4905 | 0.598866 |
| 36  | 2       | D       | NAILGLU  | 42.92   | 26.78   | 13.54  | 20.2  | 60.2689 | 0.670297 |
| 37  | 3       | S       | NAILGLU  | 66.32   | 39.85   | 39.85  | 62.8  | 66.4241 | 0.634554 |
| 38  | 3       | D       | NAILGLU  | 23.01   | 14.43   | 14.43  | 21.3  | 59.4595 | 0.677465 |
| 39  | 4       | S       | NAILGLU  | 47.00   | 29.78   | 29,78  |       | 57.8240 | 0.650218 |
| 40  | 4       | D       | NAILGLU  | 50.30   | 34.54   | 34.54  | 53.7  | 45.6283 | 0.643203 |
| 41  | 5       | S       | NAILGLU  | 124.99  | 71.60   | 71.60  |       |         | 0.618307 |
| 42  | 5       | D       | NAILGLU  | 43.10   | 28.73   | 28.73  | 45.2  | 50.0174 | 0.635619 |
| 43  | 6       | S       | NAILGLU  | 109.76  | 63.69   | 63.69  |       | 72.3347 |          |
| 44  | 6       | D       | NAILGLU  | 47.12   | 31.51   | 31.51  | 46.1  | 49.5398 | 0.683514 |
| 45  | 7       | S       | NAILGLU  | 114.06  | 66.09   | 66.09  | 106.1 | 72.5828 | 0.622903 |
| 46  | 7       | D       | NAILGLU  | 39.14   | 25.43   | 25.43  | 39.8  | 53.9127 | 0.638945 |
| 47  | 8       | S       | NAILGLU  | 116.78  | 67.97   | 67.97  | 105.7 | 71.8111 | 0.643046 |
| 48  | 8       | D       | NAILGLU  | 58.03   | 37.29   | 38.29  | 57.3  | 55.6181 | 0,668237 |

## APPENDIX F

ANOVA Procedure for Variable Maximum Load from Static Load on Corner Test

ANOVA Procedure for Variable Deflection at Maximum Load from Static Load or Corner Test

Statistics for Static Load on Corner Test

Raw Data for Static Load on Corner Test

# ANOVA PROCEDURE for VARIABLE MAXIMUM LOAD from Static LOAD ON PALLET CORNER TEST

| CLASS    | LEVELS | VALUES             |
|----------|--------|--------------------|
| TREATMNT | 3      | GLUE NAIL NAILGLUE |

NUMBER OF OBSERVATIONS IN DATA SET = 12

DEPENDENT VARIABLE: MAXIMUM LOAD

| SOURCE          | DF       | SUM OF SQUARES    | MEAN SQUARE      | F VALUE |
|-----------------|----------|-------------------|------------------|---------|
| MODEL           | 2        | 13229920.16666666 | 6614960.08333333 | 39.88   |
| ERROR           | 9        | 1492810.75000001  | 165867.86111111  | PR > F  |
| CORRECTED TOTAL | 11       | 14722730.91666667 |                  | 0.0001  |
|                 | <b>a</b> |                   | MAXIMUM LOAD     |         |
| R-SQUARE        | C.V.     | ROOT MSE          | MEAN             |         |
| 0.898605        | 13,4231  | 407.26878239      | 3034.08333333    |         |
| SOURCE          | DF       | TYPE I SS         | F VALUE PR > F   |         |
| TREATMNT        | 2        | 13229920,16666666 | 39.88 0.0001     |         |
| SOURCE          | DF       | TYPE III SS       | F VALUE PR > F   |         |
| TREATMNT        | 2        | 13229920.16666666 | 39.88 0.0001     |         |

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: MAXIMUM LOAD ALPHA=.05 MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

| DUNCAN | GROUPING | MEAN<br>(pounds) | N | TREATMNT |
|--------|----------|------------------|---|----------|
|        | A        | 4346.3           | 4 | NAILGLUE |
|        | в        | 2980.0           | 4 | GLUE     |
|        | С        | 1776.0           | 4 | NAIL     |

# ANOVA PROCEDURE for VARIABLE DEFLECTION AT MAXIMUM LOAD from STATIC LOAD ON CORNER TEST

| CLASS    | LEVELS | VALUES             |
|----------|--------|--------------------|
| TREATMNT | 3      | GLUE NAIL NAILGLUE |

NUMBER OF OBSERVATIONS IN DATA SET = 12

DEPENDENT VARIABLE: DEFLECTION AT MAXIMUM LOAD

| SOURCE          | DF      | SUM OF SQUARES | MEAN SQUARE                   | F VALUE |
|-----------------|---------|----------------|-------------------------------|---------|
| MODEL           | 2       | 0.96274850     | 0.48137425                    | 156.64  |
| ERROR           | 9       | 0.02765850     | 0.00307317                    | PR > F  |
| CORRECTED TOTAL | 11      | 0.99040700     | DEFLECTION at<br>MAXIMUM LOAD | 0.0001  |
| R-SQUARE        | C.V.    | ROOT MSE       | MEAN                          |         |
| 0.972074        | 16.0452 | 0.05543615     | 0.34550000                    |         |
| SOURCE          | DF      | TYPE I SS      | F VALUE PR > F                |         |
| TREATMNT        | 2       | 0.96274850     | 156.64 0.0001                 |         |
| SOURCE          | DF      | TYPE III SS    | F VALUE PR > F                |         |
| TREATMNT        | 2       | 0.96274850     | 156.64 0.0001                 |         |

DUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: DEFLECTION AT MAXIMUM LOAD ALPHA=0.05 means with the same letter are not significantly different.

| DUNCAN GROUPING | MEAN<br>(inches) | м | TREATMNT |
|-----------------|------------------|---|----------|
| A               | 0.74350          | 4 | NAIL     |
| в               | 0.18575          | 4 | NAILGLUE |
| B<br>B          | 0.10725          | 4 | GLUE     |

| VARIABLE            | MEAN          | MINIMUM<br>VALUE | MAXIMUM<br>VALUE | STANDARD<br>Deviation | C.V.         |  |  |  |
|---------------------|---------------|------------------|------------------|-----------------------|--------------|--|--|--|
|                     |               | TREATMNT=        | GLUE             |                       |              |  |  |  |
| MAXLOAD<br>DEFMAXLD | 2980.0<br>0.1 | 2140.0<br>0.1    | 3430.0<br>0.1    | 574.2<br>0.0          | 19.3<br>17.8 |  |  |  |
|                     |               | TREATMNT=        | -NAIL            |                       |              |  |  |  |
| MAXLOAD<br>DEFMAXLD | 1776.0<br>0.7 | 1564.0<br>0.6    | 2000.0<br>0.8    | 179.8<br>0.1          | 10.1         |  |  |  |
| TREATMNT=NAILGLUE   |               |                  |                  |                       |              |  |  |  |
| MAXLOAD<br>DEFMAXLD | 4346.3<br>0.2 | 3850.0<br>0.2    | 4650.0<br>0.2    | 368.2<br>0.0          | 8.5<br>14.1  |  |  |  |

#### STATISTICS for STATIC LOAD ON PALLET CORNER TEST

RAW DATA for STATIC LOAD ON PALLET CORNER TEST

| OBS | JOINTNUM | TREATMNT | MAXLOAD | DEFMAXLD | SUSLOAD | SUSDEF | QUASIMOD |
|-----|----------|----------|---------|----------|---------|--------|----------|
| 1   | 2        | NAIL     | 1800    | 0.707    | 1800    | 0.707  | 10100    |
| 2   | 4        | NAIL     | 1740    | 0.850    | 1740    | 0.850  | 7300     |
| 3   | 6        | NAIL     | 2000    | 0.640    | 2000    | 0.640  | 5680     |
| 4   | 8        | NAIL     | 1564    | 0.777    | 1564    | 0.777  | 11630    |
| 5   | 2        | GLUE     | 3225    | 0.110    | 3225    | 0.110  | 28500    |
| 6   | 4        | GLUE     | 3430    | 0.133    | 3430    | 0.133  | 25000    |
| 7   | 6        | GLUE     | 3125    | 0.096    | 3125    | 0.096  | 34500    |
| 8   | 8        | GLUE     | 2140    | 0.090    | 2140    | 0.090  | 20600    |
| 9   | 2        | NAILGLUE | 4650    | 0.185    | 2835    | 0.358  | 36400    |
| 10  | 4        | NAILGLUE | 4600    | 0.217    | 2850    | 0.456  | 27900    |
| 11  | 6        | NAILGLUE | 4285    | 0.188    | 2500    | 0.358  | 21300    |
| 12  | 9        | NAILGLUE | 3850    | 0.153    | 2760    | 0.443  | 27800    |

## APPENDIX G

ANOVA Procedure for Rotation Modulus Mean Statistics Rotation Modulus Adjusted Stringer Width Raw Data - Rotation Modulus

#### ANOVA PROCEDURE for ROTATION MODULUS

CLASS LEVELS VALUES TREATMNT 3 GLUE NAIL NAILGLU

NUMBER OF OBSERVATIONS IN DATA SET = 24

DEPENDENT VARIABLE: ROTATION MODULUS

| SOURCE          | DF      | SUM OF SQUARES     | MEAN SQUARE              | F VALUE |
|-----------------|---------|--------------------|--------------------------|---------|
| MODEL           | 2       | 13531207096.333329 | 6765603548.166664        | 62.96   |
| ERROR           | 21      | 2256610742.625006  | 107457654.410715         | PR > F  |
| CORRECTED TOTAL | 23      | 15787817838.958334 |                          | 0.0001  |
| R-SQUARE        | c.v.    | ROOT MSE           | ROTATION MODULUS<br>MEAN |         |
| 0.857066        | 21.3461 | 10366.178390       | 48562.29166667           |         |
| SOURCE          | DF      | TYPE I SS          | F VALUE PR > F           |         |
| TREATMNT        | 2       | 13531207096.333329 | 62.96 0.0001             |         |
| SOURCE          | DF      | TYPE III SS        | F VALUE PR > F           |         |
| TREATMNT        | 2       | 13531207096.333329 | 62.96 0.0001             |         |

IUNCAN'S MULTIPLE RANGE TEST FOR VARIABLE: ROTATION MODULUS ALFHA=0.05 MEANS WITH THE SAME LETTER ARE NOT SIGNIFICANTLY DIFFERENT.

| DUNCAN | GROUPING | MEAN  | N | TREATMNT |
|--------|----------|-------|---|----------|
|        | A        | 69364 | 8 | NAILGLU  |
|        | A A      | 60990 | 8 | GLUE     |
|        | в        | 15332 | 8 | NAIL     |

88

| VARIABLE            | MEAN    | MEAN MINIMUM<br>VALUE |         | STANDARD<br>DEVIATION | c.v. |
|---------------------|---------|-----------------------|---------|-----------------------|------|
|                     |         | TREATMNT=             | GLUE    |                       |      |
| ROTATION<br>MODULUS | 60990.4 | 48006.0               | 78706.0 | 11834.4               | 19.4 |
|                     |         | TREATMNT=             | NAIL    |                       |      |
| ROTATION            | 15332.4 | 9535.0                | 27924.0 | 6052.4                | 39.5 |
|                     |         | TREATMNT=N            | AILGLU  |                       |      |
| ROTATION<br>MODULUS | 69364.1 | 55500.0               | 89742.0 | 12070.2               | 17.4 |

#### ROTATION MODULUS MEAN STATISTICS ADJUSTED STRINGER WIDTH

#### ROTATION MODULUS RAW DATA ADJUSTED STRINGER WIDTH

| OBS | JOINT        | TREATMENT | ROTATION | MAXIMUM | DEFLECTION  | SUSTAINED | SUSTAINED  |
|-----|--------------|-----------|----------|---------|-------------|-----------|------------|
|     | NUMBER       |           | MODULUS  | LOAD    | AT MAX LOAD | LOAD      |            |
|     |              |           |          |         |             | 7.40      | o <b>F</b> |
| 1   | 1 NN         | NAIL      | 27924    | •       | •           | 342       | 0.5        |
| 2   | 2NN          | NAIL      | 19093    | •       | •           | 219       | 0.5        |
| 3   | 3NN          | NAIL      | 13582    | •       | •           | 185       | 0.5        |
| 4   | 4NN          | NAIL      | 10076    | •       | •           | 182       | 0.5        |
| 5   | 5NN          | NAIL      | 11284    | •       | •           | 196       | 0.5        |
| 6   | 5NN          | NAIL      | 9535     | •       | •           | 210       | 0.5        |
| 7   | 7NN          | NAIL      | 14376    | •       | •           | 198       | 0.5        |
| 8   | 8NN          | NAIL      | 16789    | •       | •           | 205       | 0.5        |
| 9   | 1 G G        | GLUE      | 75016    | 145     | 0.064       | •         | •          |
| 10  | 26G          | GLUE      | 78706    | 213     | 0.070       | •         | •          |
| 11  | 3GG          | GLUE      | 55500    | 325     | 0.206       | •         | •          |
| 12  | 4GG          | GLUE      | 51071    | 345     | 0.175       | •         | •          |
| 13  | 5G <b>G</b>  | GLUE      | 68585    | 291     | 0.130       | •         | •          |
| 14  | 6GG          | GLUE      | 50269    | 210     | 0.124       | •         | •          |
| 15  | 7 <b>6</b> 6 | GLUE      | 48006    | 229     | 0.122       | •         | •          |
| 16  | 8GG          | GLUE      | 60770    | 262     | 0.121       | •         | •          |
| 17  | 1NG          | NAILGLU   | 84976    | 375     | 0.140       | 175       | 0.5        |
| 18  | 2NG          | NAILGLU   | 65766    | 238     | 0.116       | 188       | 0.5        |
| 19  | 3NG          | NAILGLU   | 55500    | 206     | 0.095       | 138       | 0.5        |
| 20  | 4NG          | NAILGLU   | 57494    | 398     | 0.185       | 263       | 0.5        |
| 21  | SNG          | NAILGLU   | 67145    | 375     | 0.154       | 263       | 0.5        |
| 22  | 6NG          | NAILGLU   | 67145    | 355     | 0,157       | 269       | 0.5        |
| 23  | 7NG          | NAILGLU   | 89742    | 296     | 0.148       | 263       | 0.5        |
| 24  | 8NG          | NAILGLU   | 67145    | 300     | 0.138       | 265       | 0.5        |
| ~ 7 | 0.70         |           | 0, 140   | 200     | 0.100       |           |            |

## APPENDIX H

Data from Impact Load Test

| P   | <b>_</b> . | -   | _      |      |    |        |      |
|-----|------------|-----|--------|------|----|--------|------|
| Raw | Data       | for | Impact | Load | on | Corner | Test |

| 0<br>8<br>3                                                   | G<br>R<br>U<br>P                                             | И С Х Н Х Н О С<br>М С Х Н Х Н О С                    | T R E<br>A T<br>M N<br>T                              |                                                      | D<br>R<br>D<br>P<br>O                                | D<br>R<br>O<br>F<br>1                                    | D<br>R<br>O<br>P<br>2                                                      | I<br>F<br>C<br>F                            | (<br>)<br>;                                                                     | D<br>R<br>O<br>P<br>4                                                      | D<br>R<br>O<br>P<br>5                                            | D<br>R<br>O<br>P<br>6                                 |
|---------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>1<br>1<br>2 | 01010101010101010                                            | 135713571357                                          | NA1<br>NA1                                            | IL<br>IL<br>ILGL<br>ILGL<br>ILGL<br>ILGL<br>JE<br>JE | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 |                                             | 0<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | 50<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>00 | 60<br>60<br>60<br>60<br>60<br>60<br>60<br>0<br>0<br>0 |
| O<br>B<br>S                                                   | D<br>R<br>O<br>P<br>7                                        | D<br>R<br>O<br>P<br>8                                 | Ծ<br>Բ<br>Բ<br>ջ                                      | D<br>R<br>D<br>P<br>1<br>0                           | D<br>R<br>O<br>F<br>1                                | D<br>R<br>O<br>P<br>1<br>2                               | 0<br>R<br>P<br>1<br>3                                                      | D<br>R<br>P<br>1<br>4                       | D<br>R O<br>P<br>1 5                                                            | D<br>R<br>D<br>P<br>1<br>6                                                 | D<br>R<br>O<br>F<br>1<br>7                                       |                                                       |
| 4 2 3 4 5 5 7 8 9 0 1 1 2<br>1 1 2                            | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>0<br>0 | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>0<br>0<br>0 | 0<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>0<br>0 | 0<br>70<br>70<br>70<br>70<br>70<br>70<br>0<br>0<br>0 | 0<br>70<br>70<br>70<br>70<br>70<br>70<br>0<br>0<br>0 | 0<br>0<br>70<br>70<br>70<br>0<br>0<br>0<br>0             | 0<br>0<br>70<br>0<br>70<br>0<br>0<br>0<br>0                                | 0<br>0<br>70<br>0<br>70<br>0<br>0<br>0<br>0 | 0<br>0<br>70<br>70<br>70<br>0<br>70<br>0<br>0<br>0                              | 0<br>0<br>70<br>70<br>70<br>0<br>0<br>0                                    | 0<br>0<br>70<br>0<br>0<br>0<br>0<br>0<br>0                       |                                                       |

# The vita has been removed from the scanned document